OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7741–7748

Unconventional structure-assisted optical manipulation of high-index nanowires in liquid crystals

David Engström, Michael C.M. Varney, Martin Persson, Rahul P. Trivedi, Kris A. Bertness, Mattias Goksör, and Ivan I. Smalyukh  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 7741-7748 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2331 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Stable optical trapping and manipulation of high-index particles in low-index host media is often impossible due to the dominance of scattering forces over gradient forces. Here we explore optical manipulation in liquid crystalline structured hosts and show that robust optical manipulation of high-index particles, such as GaN nanowires, is enabled by laser-induced distortions in long-range molecular alignment, via coupling of translational and rotational motions due to helicoidal molecular arrangement, or due to elastic repulsive interactions with confining substrates. Anisotropy of the viscoelastic liquid crystal medium and particle shape give rise to a number of robust unconventional trapping capabilities, which we use to characterize defect structures and study rheological properties of various thermotropic liquid crystals.

© 2012 OSA

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(160.3710) Materials : Liquid crystals
(180.6900) Microscopy : Three-dimensional microscopy
(160.4236) Materials : Nanomaterials

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: January 17, 2012
Revised Manuscript: March 3, 2012
Manuscript Accepted: March 4, 2012
Published: March 20, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics

David Engström, Michael C.M. Varney, Martin Persson, Rahul P. Trivedi, Kris A. Bertness, Mattias Goksör, and Ivan I. Smalyukh, "Unconventional structure-assisted optical manipulation of high-index nanowires in liquid crystals," Opt. Express 20, 7741-7748 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]
  2. S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581 (2003).
  3. K. C. Neuman, S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004). [CrossRef] [PubMed]
  4. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986). [CrossRef] [PubMed]
  5. K. Dholakia, T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011). [CrossRef]
  6. E. Higurashi, H. Ukita, H. Tanaka, O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994). [CrossRef]
  7. R. C. Gauthier, M. Ashman, C. P. Grover, “Experimental confirmation of the optical-trapping properties of cylindrical objects,” Appl. Opt. 38(22), 4861–4869 (1999). [CrossRef] [PubMed]
  8. W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021911 (2006). [CrossRef] [PubMed]
  9. H. Ukita, K. Nagatomi, “Theoretical demonstration of a newly designed micro-rotator driven by optical pressure on a eight incident surface,” Opt. Rev. 4(4), 447–449 (1997). [CrossRef]
  10. D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schäfer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt. 13(4), 044023 (2011). [CrossRef]
  11. S. H. Simpson, S. Hanna, “Holographic optical trapping of microrods and nanowires,” J. Opt. Soc. Am. A 27(6), 1255–1264 (2010). [CrossRef] [PubMed]
  12. S. H. Simpson, S. Hanna, “Optical trapping of microrods: variation with size and refractive index,” J. Opt. Soc. Am. A 28(5), 850–858 (2011). [CrossRef] [PubMed]
  13. C. P. Lapointe, T. G. Mason, I. I. Smalyukh, “Shape-controlled colloidal interactions in nematic liquid crystals,” Science 326(5956), 1083–1086 (2009). [CrossRef] [PubMed]
  14. J. E. Curtis, B. A. Koss, D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002). [CrossRef]
  15. D. Engström, R. P. Trivedi, M. Persson, M. Goksör, K. A. Bertness, I. I. Smalyukh, “Three-dimensional imaging of liquid crystal structures and defects by means of holographic manipulation of colloidal nanowires with faceted sidewalls,” Soft Matter 7(13), 6304–6312 (2011). [CrossRef]
  16. R. P. Trivedi, D. Engström, I. I. Smalyukh, “Optical manipulation of colloids and defect structures in anisotropic liquid crystal fluids,” J. Opt. 13(4), 044001 (2011). [CrossRef]
  17. K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, A. Davydov, “Spontaneously grown GaN and AlGaN nanowires,” J. Cryst. Growth 287(2), 522–527 (2006). [CrossRef]
  18. Certain commercial materials are identified in this paper only to specify experimental procedures. Such identification implies neither recommendation or endorsement by the National Institute of Standards and Technology, nor that materials identified are necessarily the best available for the purpose.
  19. B.-W. Lee, N. A. Clark, “Alignment of liquid crystals with patterned isotropic surfaces,” Science 291(5513), 2576–2580 (2001). [CrossRef] [PubMed]
  20. I. I. Smalyukh, S. V. Shiyanovskii, O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001). [CrossRef]
  21. V. L. Y. Loke, M. P. Mengüç, T. A. Nieminen, “Discrete dipole approximation with surface interaction: Computational toolbox for MATLAB,” J. Quant. Spectrosc. Radiat. Transf. 112(11), 1711–1725 (2011). [CrossRef]
  22. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007). [CrossRef]
  23. V. M. Pergamenshchik, V. A. Uzunova, “Colloid-wall interaction in a nematic liquid crystal: the mirror-image method of colloidal nematostatics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(2), 021704 (2009). [CrossRef] [PubMed]
  24. A. Ortega, J. G. de la Torre, “Hydrodynamic properties of rodlike and disklike particles in dilute solution,” J. Chem. Phys. 119(18), 9914–9919 (2003). [CrossRef]
  25. C. J. Smith, C. Denniston, “Elastic response of a nematic liquid crystal to an immersed nanowire,” J. Appl. Phys. 101(1), 014305 (2007). [CrossRef]
  26. R. Di Leonardo, E. Cammarota, G. Bolognesi, H. Schäfer, M. Steinhart, “Three-dimensional to two-dimensional crossover in the hydrodynamic interactions between micron-scale rods,” Phys. Rev. Lett. 107(4), 044501 (2011). [CrossRef] [PubMed]
  27. Q. Liu, T. Asavei, T. Lee, H. Rubinsztein-Dunlop, S. He, I. I. Smalyukh, “Measurement of viscosity of lyotropic liquid crystals by means of rotating laser-trapped microparticles,” Opt. Express 19(25), 25134–25143 (2011). [CrossRef] [PubMed]
  28. H. F. Gleeson, T. A. Wood, M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Philos. Transact. A Math. Phys. Eng. Sci. 364(1847), 2789–2805 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: AVI (2707 KB)     
» Media 2: AVI (1289 KB)     
» Media 3: AVI (2138 KB)     
» Media 4: AVI (1154 KB)     
» Media 5: AVI (2138 KB)     
» Media 6: AVI (1134 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited