OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 8024–8040

Multiplication theory for dynamically biased avalanche photodiodes: new limits for gain bandwidth product

Majeed M. Hayat and David A. Ramirez  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 8024-8040 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1440 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Novel theory is developed for the avalanche multiplication process in avalanche photodiodes (APDs) under time-varying reverse-biasing conditions. Integral equations are derived characterizing the statistics of the multiplication factor and the impulse-response function of APDs, as well as their breakdown probability, all under the assumption that the electric field driving the avalanche process is time varying and spatially nonuniform. Numerical calculations generated by the model predict that by using a bit-synchronous sinusoidal biasing scheme to operate the APD in an optical receiver, the pulse-integrated gain-bandwidth product can be improved by a factor of 5 compared to the same APD operating under the conventional static biasing. The bit-synchronized periodic modulation of the electric field in the multiplication region serves to (1) produce large avalanche multiplication factors with suppressed avalanche durations for photons arriving in the early phase of each optical pulse; and (2) generate low avalanche gains and very short avalanche durations for photons arriving in the latter part of each optical pulse. These two factors can work together to reduce intersymbol interference in optical receivers without sacrificing sensitivity.

© 2012 OSA

OCIS Codes
(040.0040) Detectors : Detectors
(040.5160) Detectors : Photodetectors
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4510) Fiber optics and optical communications : Optical communications
(040.1345) Detectors : Avalanche photodiodes (APDs)

ToC Category:

Original Manuscript: December 20, 2011
Revised Manuscript: March 2, 2012
Manuscript Accepted: March 9, 2012
Published: March 22, 2012

Majeed M. Hayat and David A. Ramirez, "Multiplication theory for dynamically biased avalanche photodiodes: new limits for gain bandwidth product," Opt. Express 20, 8024-8040 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, 2007).
  2. P. Bhattacharya, Semiconductor Optoelectronic Devices (Prentice Hall, 1996).
  3. R. G. Smith and S. D. Personick, “Receiver Design for Optical Fiber Communication Systems,” Semiconductor Devices for Optical Communication, H. Kressel ed. (Springer-Verlag, 1980).
  4. B. L. Kasper, J. C. Campbell, “Multigigabit-per-second avalanche photodiode lightwave receivers,” J. Lightwave Technol. 5(10), 1351–1364 (1987). [CrossRef]
  5. T. Nakata, I. Watanabe, K. Makita, T. Torikai, “InAlAs avalanche photodiodes with very thin multiplication layer of 0.1 μm for high-speed and low-voltage-operation optical receiver,” Electron. Lett. 36(21), 1807–1808 (2000). [CrossRef]
  6. P. Sun, M. M. Hayat, B. E. A. Saleh, M. C. Teich, “Statistical correlation of gain and buildup time in APDs and its effects on receiver performance,” J. Lightwave Technol. 24(2), 755–768 (2006). [CrossRef]
  7. D. S. G. Ong, J. S. Ng, M. M. Hayat, P. Sun, J. P. R. David, “Optimization of InP APDs for high-speed lightwave systems,” J. Lightwave Technol. 27(15), 3294–3302 (2009). [CrossRef]
  8. K. Makita, T. Nakata, K. Shiba, T. Takeuchi, “40Gbps waveguide photodiodes,” NEC J. Adv. Tech. 2, 234–240 (2005).
  9. Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009). [CrossRef]
  10. W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009). [CrossRef] [PubMed]
  11. Y. Kang, Z. Huang, Y. Saado, J. Campbell, A. Pauchard, J. Bowers, and M. J. Paniccia, “High performance Ge/Si avalanche photodiodes development in Intel,” Opt. Fiber Comm. Conf. & Expo. (OFC/NFOEC), 1–3 (2011).
  12. J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004). [CrossRef]
  13. D. C. Herbert, E. T. R. Chidley, “Very low noise avalanche detection,” IEEE Trans. Electron. Dev. 48(7), 1475–1477 (2001). [CrossRef]
  14. R. J. McIntyre, “Multiplication noise in uniform avalanche diodes,” IEEE Trans. Electron. Dev. 13(1), 164–168 (1966). [CrossRef]
  15. M. M. Hayat, B. E. A. Saleh, M. C. Teich, “Effect of dead space on gain and noise of double-carrier-multiplication avalanche photodiodes,” IEEE Trans. Electron. Dev. 39(3), 546–552 (1992). [CrossRef]
  16. M. M. Hayat, B. E. A. Saleh, “Statistical properties of the impulse response function of double carrier multiplication avalanche photodiodes including the effect of dead space,” J. Lightwave Technol. 10(10), 1415–1425 (1992). [CrossRef]
  17. G. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002).
  18. M. M. Hayat, O.-H. Kwon, Y. Pan, P. Sotirelis, J. C. Campbell, B. E. A. Saleh, M. C. Teich, “Gain-bandwidth characteristics of thin avalanche photodiodes,” IEEE Trans. Electron. Dev. 49(5), 770–781 (2002). [CrossRef]
  19. N. Yasuoka, H. Kuwatsuka, M. Makiuchi, T. Uchida, and A. Yasaki, “Large multiplication-bandwidth products in APDs with a thin InP multiplication layer,” Proc. IEEE Laser & Electro Opt. Soc. Ann. Meeting LEOS' 2003, 999–1000 (2003).
  20. N. Namekata, S. Adachi, S. Inoue, “1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode,” Opt. Express 17(8), 6275–6282 (2009). [CrossRef] [PubMed]
  21. J. Zhang, P. Eraerds, N. Walenta, C. Barreiro, R. Thew, H. Zbinden, “2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution,” Proc. SPIE 7681, 76810Z1–76810Z8 (2010).
  22. M. A. Saleh, M. M. Hayat, B. E. A. Saleh, M. C. Teich, “Dead-space-based theory correctly predicts excess noise factor for thin GaAs and AlGaAs avalanche photodiodes,” IEEE Trans. Electron. Dev. 47(3), 625–633 (2000). [CrossRef]
  23. J. S. Ng, C. H. Tan, J. P. David, G. Hill, G. J. Rees, “Field dependence of impact ionization coefficients in In0.53Ga0.47As,” IEEE Trans. Electron. Dev. 50(4), 901–905 (2003). [CrossRef]
  24. F. Osaka, T. Mikawa, T. Kaneda, “Electron and hole ionization coefficients in (100) oriented Ga0.33In0.67As0.70P0.30,” Appl. Phys. Lett. 45(3), 292–293 (1984). [CrossRef]
  25. M. M. Hayat, W. L. Sargeant, B. E. A. Saleh, “Effect of dead space on gain and noise in Si and GaAs avalanche photodiodes,” IEEE J. Quantum Electron. 28(5), 1360–1365 (1992). [CrossRef]
  26. M. M. Hayat, O.-H. Kwon, S. Wang, J. C. Campbell, B. E. A. Saleh, M. C. Teich, “Boundary effects on multiplication noise in thin heterostructure avalanche photodiodes,” IEEE Trans. Electron. Dev. 49(12), 2114–2123 (2002). [CrossRef]
  27. C. H. Tan, P. J. Hambleton, J. P. R. David, R. C. Tozer, G. J. Rees, “Calculation of APD impulse response using a space- and time-dependent ionization probability distribution function,” J. Lightwave Technol. 21(1), 155–159 (2003). [CrossRef]
  28. L. J. J. Tan, J. S. Ng, C. H. Tan, J. P. R. David, “Avalanche noise characteristics in submicron InP diodes,” IEEE J. Quantum Electron. 44(4), 378–382 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited