OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 8093–8099

Indium-rich InGaN epitaxial layers grown pseudomorphically on a nano-sculpted InGaN template

J. J. Xue, D. J. Chen, B. Liu, H. Lu, R. Zhang, Y. D. Zheng, B. Cui, Andrew M. Wowchak, Amir M. Dabiran, K. Xu, and J. P. Zhang  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 8093-8099 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1221 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Indium-rich InGaN epitaxial layers with a p-i-n structure were grown pseudomorphically on a strain-relaxed InGaN template to reduce structural strain induced by lattice mismatch. We applied a nano-sculpting process to improve the crystal quality of the strain-relaxed InGaN template. The results show that the nano-sculpting process can suppress effectively the threading dislocation generation and improves significantly the I-V characteristic of the InGaN p-i-n structure. This InGaN template technique with nano-sculpting process shows great potential for future applications in indium-rich InGaN optic-electron devices.

© 2012 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(310.1860) Thin films : Deposition and fabrication
(310.4165) Thin films : Multilayer design
(310.4925) Thin films : Other properties (stress, chemical, etc.)

ToC Category:
Thin Films

Original Manuscript: January 26, 2012
Revised Manuscript: March 19, 2012
Manuscript Accepted: March 20, 2012
Published: March 22, 2012

J. J. Xue, D. J. Chen, B. Liu, H. Lu, R. Zhang, Y. D. Zheng, B. Cui, Andrew M. Wowchak, Amir M. Dabiran, K. Xu, and J. P. Zhang, "Indium-rich InGaN epitaxial layers grown pseudomorphically on a nano-sculpted InGaN template," Opt. Express 20, 8093-8099 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002). [CrossRef]
  2. E. Muñoz, “(Al,ln,Ga)N-based photodetectors. some materials issues,” Phys. Stat. Solidi B 244(8), 2859–2877 (2007). [CrossRef]
  3. R. Dahal, B. Pantha, J. Li, J. Y. Lin, H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett. 94(6), 063505 (2009). [CrossRef]
  4. J. J. Xue, D. J. Chen, B. Liu, Z. L. Xie, R. L. Jiang, R. Zhang, Y. D. Zheng, “Au/Pt/InGaN/GaN heterostructure Schottky prototype solar cell,” Chin. Phys. Lett. 26(9), 098102 (2009). [CrossRef]
  5. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(Part 2, No. 1B), L74–L76 (1996). [CrossRef]
  6. S. Nakamura, T. Mukai, M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994). [CrossRef]
  7. Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, S. Nakamura, “Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm,” Appl. Phys. Lett. 70(8), 981–983 (1997). [CrossRef]
  8. H. Naoi, M. Kurouchi, S. Takado, D. Muto, T. Araki, Y. Nanishi, “Structural and luminescence properties of In-rich InGaN layers grown on InN templates by RF-MBE,” Phys. Status Solidi A 202(14), 2642–2647 (2005). [CrossRef]
  9. A. Kobayashi, J. Ohta, H. Fujioka, “Low temperature epitaxial growth of In0.25Ga0.75N on lattice-matched ZnO by pulsed laser deposition,” J. Appl. Phys. 99(12), 123513 (2006). [CrossRef]
  10. P. I. Cohen and B. Cui, US patent 20100090311A1 (2010).
  11. S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, E. Alves, A. D. Sequeira, N. Franco, I. M. Watson, C. J. Deatcher, “Strain and composition distributions in Wurtzite InGaN/GaN layers extracted from x-ray reciprocal space mapping,” Appl. Phys. Lett. 80(21), 3913–3915 (2002). [CrossRef]
  12. M. Schuster, P. O. Gervais, B. Jobst, W. Hosler, R. Averbeck, H. Riechert, A. Iberl, R. Stommer, “Determination of the chemical composition of distorted InGaN GaN heterostructures from x-ray diffraction data,” J. Phys. D Appl. Phys. 32(10A), A56–A60 (1999). [CrossRef]
  13. T. Detchprohm, K. Hiramatsu, K. Itoh, I. Akasaki, “Relaxation process of the thermal strain in the GaN/alpha-Al2O3 heterostructure and determination of the intrinsic lattice constants of GaN free from the strain,” Jpn. J. Appl. Phys. 31(Part 2, No. 10B), L1454–L1456 (1992).
  14. W. Paszkowicz, “X-ray powder diffraction data for indium nitride,” Powder Diffr. 14, 258–260 (1999).
  15. A. F. Wright, “Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN,” J. Appl. Phys. 82(6), 2833–2839 (1997). [CrossRef]
  16. R. Colby, Z. W. Liang, I. H. Wildeson, D. A. Ewoldt, T. D. Sands, R. E. García, E. A. Stach, “Dislocation filtering in GaN nanostructures,” Nano Lett. 10(5), 1568–1573 (2010). [CrossRef] [PubMed]
  17. C. Tessarek, S. Figge, T. Aschenbrenner, S. Bley, A. Rosenauer, M. Seyfried, J. Kalden, K. Sebald, J. Gutowski, D. Hommel, “Strong phase separation of strained In(x)Ga(1-x)N layers due to spinodal and binodal decomposition: formation of stable quantum dots,” Phys. Rev. B 83(11), 115316 (2011). [CrossRef]
  18. B. N. Pantha, J. Li, J. Y. Lin, H. X. Jiang, “Evolution of phase separation in In-rich InGaN alloys,” Appl. Phys. Lett. 96(23), 232105 (2010). [CrossRef]
  19. Y. Huang, A. Melton, B. Jampana, M. Jamil, J. H. Ryou, R. D. Dupuis, I. T. Ferguson, “Compositional instability in strained InGaN epitaxial layers induced by kinetic effects,” J. Appl. Phys. 110(6), 064908 (2011). [CrossRef]
  20. L. Sang, M. Takeguchi, W. Lee, Y. Nakayama, M. Lozach, T. Sekiguchi, M. Sumiya, “Phase separation resulting from Mg doping in p-InGaN film grown on GaN/Sapphire template,” Appl. Phys. Express 3(11), 111004 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited