OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8575–8583

Planar InAs photodiodes fabricated using He ion implantation

Ian Sandall, Chee Hing Tan, Andrew Smith, and Russell Gwilliam  »View Author Affiliations


Optics Express, Vol. 20, Issue 8, pp. 8575-8583 (2012)
http://dx.doi.org/10.1364/OE.20.008575


View Full Text Article

Enhanced HTML    Acrobat PDF (1296 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have performed Helium (He) ion implantation on InAs and performed post implant annealing to investigate the effect on the sheet resistance. Using the transmission line model (TLM) we have shown that the sheet resistance of a p+ InAs layer, with a nominal doping concentration of 1x1018 cm−3, can increase by over 5 orders of magnitude upon implantation. We achieved a sheet resistance of 1x105 Ω/Square in an ‘as-implanted’ sample and with subsequent annealing this can be further increased to 1x107 Ω/Square. By also performing implantation on p-i-n structures we have shown that it is possible to produce planar photodiodes with comparable dark currents and quantum efficiencies to chemically etched reference mesa InAs photodiodes.

© 2012 OSA

OCIS Codes
(040.3060) Detectors : Infrared
(040.5160) Detectors : Photodetectors
(160.6000) Materials : Semiconductor materials
(230.5170) Optical devices : Photodiodes
(040.1345) Detectors : Avalanche photodiodes (APDs)

ToC Category:
Detectors

History
Original Manuscript: January 26, 2012
Revised Manuscript: March 4, 2012
Manuscript Accepted: March 23, 2012
Published: March 28, 2012

Citation
Ian Sandall, Chee Hing Tan, Andrew Smith, and Russell Gwilliam, "Planar InAs photodiodes fabricated using He ion implantation," Opt. Express 20, 8575-8583 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-8-8575


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Baker, S. Duncan, and J. Copley, “A low noise, laser-gated imaging system for long range target. identification,” Proc. SPIE5406, 133–144 (2004). [CrossRef]
  2. A. Krier, H. H. Gao, and Y. Mao, “A room temperature photovoltaic detector for the mid -infrared (1.8–3.4 μm) wavelength region,” Semicond. Sci. Technol.13(8), 950–956 (1998). [CrossRef]
  3. M. Achour, “Free-space optics wavelength selection: 10 μm versus shorter wavelengths,” Proc. SPIE5160, 234–246 (2004). [CrossRef]
  4. A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett.93(11), 111107 (2008). [CrossRef]
  5. A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011). [CrossRef]
  6. P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011). [CrossRef]
  7. J. M Arias, J. G. Pasko, M. Zandian, S. H. Shin, G. M. Williams, L. O. Bubulac, R. E. de Wames, and W. E. Tennant, “MBE HgCdTe heterostructure p-on-n planar infrared photodiodes,” J. Electron. Mater.22, 1049–1053 (1993).
  8. R. Wollrab, A. Bauer, H. Bitterlich, M. Bruder, S. Hanna, H. Lutz, K.-M. Mahlein, T. Schallenberg, and J. Ziegler, “Planar n-on-p HgCdTe FPAs for LWIR and VLWIR applications,” J. Electron. Mater.40(8), 1618–1623 (2011). [CrossRef]
  9. A. Säynätjoki, P. Kostamo, J. Sormunen, J. Riikonen, A. Lankinen, H. Lipsanen, H. Andersson, K. Banzuzi, S. Nenonen, H. Sipilä, S. Vaijärvi, and D. Lumb, “InAs pixel matrix detectors fabricated by diffusion of Zn in a metal-organic vapour-phase epitaxy reactor,” Nucl. Instrum. Methods Phys. Res. A563(1), 24–26 (2006). [CrossRef]
  10. J. W. Shi, F. M. Kuo, and B. R. Huang, “Zn-diffusion InAs photodiodes on a semi-insulating GaAs substrate for high-speed and low dark-current performance,” IEEE Photon. Technol. Lett.23(2), 100–102 (2011). [CrossRef]
  11. A. Ezis and D. W. Langer, “Backgating characteristics of MODFET structures,” IEEE Electron Device Lett.6(10), 494–496 (1985). [CrossRef]
  12. J. D. Speight, P. Leigh, N. Mcintyre, I. G. Groves, S. O’Hara, and P. Hemment, “High-efficiency proton-isolated GaAs IMPATT diodes,” Electron Lett.10(7), 98–99 (1974). [CrossRef]
  13. J. J. Hsieh, J. A. Rossi, and J. P. Donnelly, “Room‐temperature cw operation of GaInAsP/InP double‐heterostructure diode lasers emitting at 1.1 μ m,” Appl. Phys. Lett.28(12), 709–711 (1976). [CrossRef]
  14. M. V. Rao, “High-energy (MeV) ion implantation and its device applications in GaAs and InP,” IEEE Trans. Electron. Dev.40(6), 1053–1066 (1993). [CrossRef]
  15. S. Ahmed, B. J. Sealy, and R. Gwilliam, “Annealing characteristics of the implant-isolated n-type GaAs layers: effects of ion species and implant temperature,” Nucl. Instrum. Methods Phys. Res. B206, 1008–1012 (2003). [CrossRef]
  16. S. Ahmed, R. Gwilliam, and B. J. Sealy, “Ion-beam-induced isolation of GaAs layers by 4He+ implantation: effects of hot implants,” Semicond. Sci. Technol.16(10), L64–L67 (2001). [CrossRef]
  17. A. G. Foyt, W. T. Lindley, and J. P. Donelly, “n‐p Junction photodetectors in InSb fabricated by proton bombardment,” Appl. Phys. Lett.16(9), 335–337 (1970). [CrossRef]
  18. S. J. Pearton, “Ion implantation doping and isolation of III-V semiconductors,” Nucl. Instrum. Methods Phys. Res. B59–60, 970–977 (1991). [CrossRef]
  19. P. Too, S. Ahmed, R. Gwilliam, and B. J. Sealy, “Electrical isolation of InP and InGaAs using iron and krypton,” Electron. Lett.40(20), 1302–1303 (2004). [CrossRef]
  20. H. Boudinov, H. H. Tan, and C. Jagadish, “Electrical isolation of n-type and p-type InP layers by proton bombardment,” J. Appl. Phys.89(10), 5343–5347 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited