OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8618–8628

Bulk and surface plasmon polariton excitation in RuO2 for low-loss plasmonic applications in NIR

L. Wang, C. Clavero, K. Yang, E. Radue, M. T. Simons, I. Novikova, and R. A. Lukaszew  »View Author Affiliations

Optics Express, Vol. 20, Issue 8, pp. 8618-8628 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (5354 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Transition-metal oxides, such as RuO2, offer an exciting alternative to conventional metals for metamaterials and plasmonic applications due to their low optical losses in the visible and near-infrared ranges. In this manuscript we report observation of optically excited surface plasmon polaritons (SPPs) and bulk plasmons in RuO2 thin films grown using DC reactive magnetron sputtering on glass and TiO2 (001) substrates. We show that both plasmon modes can exist simultaneously for the infrared region of the optical spectrum, while only the bulk plasmons are supported at higher optical frequencies. Finally, we demonstrate that the film properties can be tailored to favor excitation of either SPP or bulk plasmons.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(310.0310) Thin films : Thin films
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: February 9, 2012
Revised Manuscript: March 22, 2012
Manuscript Accepted: March 23, 2012
Published: March 28, 2012

L. Wang, C. Clavero, K. Yang, E. Radue, M. T. Simons, I. Novikova, and R. A. Lukaszew, "Bulk and surface plasmon polariton excitation in RuO2 for low-loss plasmonic applications in NIR," Opt. Express 20, 8618-8628 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Dominici, F. Michelotti, T. M. Brown, A. Reale, and A. Di Carlo, “Plasmon polaritons in the near infrared on fluorine doped tin oxide films,” Opt. Express17(12), 10155–10167 (2009). [CrossRef]
  2. K. Welford, “Surface plasmon-polaritons and their uses,” Opt. Quantum Electron.23(1), 1–27 (1991). [CrossRef]
  3. J. Biener, G. W. Nyce, A. M. Hodge, M. M. Biener, A. V. Hamza, and S. A. Maier, “Nanoporous plasmonic metamaterials,” Adv. Mater. (Deerfield Beach Fla.)20(6), 1211–1217 (2008). [CrossRef]
  4. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science317(5845), 1698–1702 (2007). [CrossRef]
  5. G. X. Li, Z. L. Wang, S. M. Chen, and K. W. Cheah, “Narrowband plasmonic excitation on gold hole-array nanostructures observed using spectroscopic ellipsometer,” Opt. Express19, 6356–6361 (2011).
  6. Y. W. Cao, R. Jin, and C. A. Mirkin, “DNA-modified core-shell Ag/Au nanoparticles,” J. Am. Chem. Soc.123(32), 7961–7962 (2001). [CrossRef]
  7. R. Pratibha, K. Park, I. I. Smalyukh, and W. Park, “Tunable optical metamaterial based on liquid crystal-gold nanosphere composite,” Opt. Express17(22), 19459–19469 (2009). [CrossRef]
  8. I. H. El-Sayed, X. H. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer,” Nano Lett.5(5), 829–834 (2005). [CrossRef]
  9. A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011). [CrossRef]
  10. G. V. Naik and A. Boltasseva; “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.)5(1), 1–7 (2011). [CrossRef]
  11. C. Clavero, K. Yang, J. R. Skuza, and R. A. Lukaszew, “Magnetic field modulation of intense surface plasmon polaritons,” Opt. Express18(8), 7743–7752 (2010). [CrossRef]
  12. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express1(6), 1090–1099 (2011). [CrossRef]
  13. R. Won, “View from...NANOMETA 2011: In search of new materials,” Nat. Photonics5(3), 139–140 (2011). [CrossRef]
  14. R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: A novel tool for real time sensing of variations in living cells,” Biophys. J.90(7), 2592–2599 (2006). [CrossRef]
  15. W. DiPippo, B. J. Lee, and K. Park, “Design analysis of doped-silicon surface plasmon resonance immunosensors in mid-infrared range,” Opt. Express18(18), 19396–19406 (2010). [CrossRef]
  16. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys.3(7), 477–480 (2007). [CrossRef]
  17. P. F. Robusto and R. Braunstein, “Optical measurements of the surface-plasmon of indium tin oxide,” Phys. Status Solidi A119(1), 155–168 (1990). [CrossRef]
  18. C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys.100(5), 054905 (2006). [CrossRef]
  19. C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys.103(9), 093108 (2008). [CrossRef]
  20. R. B. Pettit, J. Silcox, and R. Vincent, “Measurement of surface-plasmon dispersion in oxidized Aluminum films,” Phys. Rev. B11(8), 3116–3123 (1975). [CrossRef]
  21. C. C. Hu, K. H. Chang, M. C. Lin, and Y. T. Wu, “Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors,” Nano Lett.6(12), 2690–2695 (2006). [CrossRef]
  22. L. F. Mattheiss, “Electronic structure of RuO2, OsO2, and IrO2,” Phys. Rev. B13(6), 2433–2450 (1976). [CrossRef]
  23. K. Glassford and J. Chelikowsky, “Electron transport properties in RuO2 rutile,” Phys. Rev. B49(11), 7107–7114 (1994). [CrossRef]
  24. P. Hones, T. Gerfin, and M. Gratzel, “Spectroscopic ellipsometry of RuO2 films prepared by metalorganic chemical vapor deposition,” Appl. Phys. Lett.67(21), 3078–3080 (1995). [CrossRef]
  25. D. Búc, M. Mikula, D. Music, U. Helmersson, P. Jin, S. Nakao, K. Y. Li, P. W. Shum, Z. Zhou, and M. Čaplovičová, “Ruthenium oxide films prepared by reactive unbalanced magnetron sputtering,” J. Electric. Eng.55, 39–42 (2004).
  26. E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmon excited by light,” Z. Naturforsch.23a, 2135–2136 (1968).
  27. H. S. Nalwa, Handbook of Thin Film Materials: Semiconductor and Superconductor Thin Films (Academic, 2002).
  28. S. K. Hong, H. J. Kim, and H. G. Yang, “Stress measurements of radio-frequency reactively sputtered RuO2 thin films,” J. Appl. Phys.80(2), 822–826 (1996). [CrossRef]
  29. J. H. Huang and J. S. Chen, “Material characteristics and electrical property of reactively sputtered RuO2 thin films,” Thin Solid Films382(1-2), 139–145 (2001). [CrossRef]
  30. A. K. Goel, G. Skorinko, and F. H. Pollak, “Optical properties of single-crystal rutile RuO2 and IrO2 in the range 0.5 to 9.5 eV,” Phys. Rev. B24(12), 7342–7350 (1981). [CrossRef]
  31. M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B53(8), 4265–4274 (1996). [CrossRef]
  32. M. Schubert, T. E. Tiwald, and J. A. Woollam, “Explicit solutions for the optical properties of arbitrary magneto-optic materials in generalized ellipsometry,” Appl. Opt.38(1), 177–187 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited