OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 9161–9171

Comparison of surface integral equation formulations for electromagnetic analysis of plasmonic nanoscatterers

M. G. Araújo, J. M. Taboada, D. M. Solís, J. Rivero, L. Landesa, and F. Obelleiro  »View Author Affiliations

Optics Express, Vol. 20, Issue 8, pp. 9161-9171 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3585 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The performance of most widespread surface integral equation (SIE) formulations with the method of moments (MoM) are studied in the context of plasmonic materials. Although not yet widespread in optics, SIE-MoM approaches bring important advantages for the rigorous analysis of penetrable plasmonic bodies. Criteria such as accuracy in near and far field calculations, iterative convergence and reliability are addressed to assess the suitability of these formulations in the field of plasmonics.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2110) Physical optics : Electromagnetic optics
(260.3910) Physical optics : Metal optics
(290.2200) Scattering : Extinction

ToC Category:
Optics at Surfaces

Original Manuscript: January 20, 2012
Revised Manuscript: March 15, 2012
Manuscript Accepted: April 2, 2012
Published: April 5, 2012

M. G. Araújo, J. M. Taboada, D. M. Solís, J. Rivero, L. Landesa, and F. Obelleiro, "Comparison of surface integral equation formulations for electromagnetic analysis of plasmonic nanoscatterers," Opt. Express 20, 9161-9171 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010). [CrossRef] [PubMed]
  3. S. Kawata, ed., Near-Field Optis and Surface Plasmon Polaritons (Springer, 2010).
  4. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005). [CrossRef] [PubMed]
  5. L. Novotny and N. F. van Hulst, “Antennas for Light,” Nat. Photonics5(2), 83–90 (2011). [CrossRef]
  6. P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Physics Optics arXiv:1103.1568v1, (2011).
  7. J. Zhou, Y. Zhou, S. L. Ng, H. X. Zhang, W. X. Que, Y. L. Lam, Y. C. Chan, and C. H. Kam, “Three-dimensional photonic band gap structure of a polymer-metal composite,” Appl. Phys. Lett.76, 3337–3339 (2000).
  8. B. T. Schwartz and R. Piestun, “Total external reflection from metamaterials with ultralow refractive index,” J. Opt. Soc. Am. B20(12), 2448–2453 (2003). [CrossRef]
  9. M. Salaün, B. Corbett, S. B. Newcomb, and M. E. Pemble, “Fabrication and characterization of three-dimensional silver/air inverted opal photonic crystals,” J. Mater. Chem.20(36), 7870–7874 (2010). [CrossRef]
  10. A. Taflove and M. E. Brodwin, “Numerical solution of steadystate electromagnetic scattering problems using the timedependent Maxwell’s equations,” IEEE Trans. Microw. Theory Tech.23(8), 623–630 (1975). [CrossRef]
  11. T. Weiland, “A discretization method for the solution of Maxwell’s equations for six-component fields,” Arch. Elektron. Übertragungstech.31, 116–120 (1977).
  12. R. F. Harrington, Field Computation by Moment Method (IEEE Press, 1993).
  13. A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am. A26(4), 732–740 (2009). [CrossRef] [PubMed]
  14. B. Gallinet, A. M. Kern, and O. J. F. Martin, “Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach,” J. Opt. Soc. Am. A27(10), 2261–2271 (2010). [CrossRef] [PubMed]
  15. J. M. Taboada, J. Rivero, F. Obelleiro, M. G. Araújo, and L. Landesa, “Method-of-moments formulation for the analysis of plasmonic nano-optical antennas,” J. Opt. Soc. Am. A28(7), 1341–1348 (2011). [CrossRef] [PubMed]
  16. P. Ylä-Oijala, M. Taskinen, and S. Järvenpää, “Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci.40(6), RS6002 (2005). [CrossRef]
  17. Ö. Ergül and L. Gürel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antenn. Propag.57(1), 176–187 (2009). [CrossRef]
  18. M. G. Araújo, J. M. Taboada, J. Rivero, and F. Obelleiro, “Comparison of Surface Integral Equations for Left-Handed Materials,” Prog. Electromagn. Res.118, 425–440 (2011). [CrossRef]
  19. Ö. Ergül, “Fast and Accurate Analysis of Homogenized Metamaterials With the Surface Integral Equations and the Multilevel Fast Multipole Algorithm,” IEEE Antennas Wirel. Propag. Lett.10, 1286–1289 (2011). [CrossRef]
  20. J. R. Mautz and R. F. Harrington, “Electromagnetic scattering from a homogeneous material body of revolution,” Arch. Elektr. Uebertrag.33, 71–80 (1979).
  21. C. Müller, Foundations of the Mathematical Theory of Electromagnetic Waves (Springer, 1969).
  22. P. Ylä-Oijala and M. Taskinen, “Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects,” IEEE Trans. Antenn. Propag.53(10), 3316–3323 (2005). [CrossRef]
  23. P. Ylä-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antenn. Propag.53(3), 1168–1173 (2005). [CrossRef]
  24. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley, 1983).
  25. S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antenn. Propag.30(3), 409–418 (1982). [CrossRef]
  26. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  27. G. Hass and J. E. Waylonis, “Optical Constants and Reflectance and Transmittance of Evaporated Aluminum in the Visible and Ultraviolet,” J. Opt. Soc. Am.51(7), 719–722 (1961). [CrossRef]
  28. D. R. Wilton, S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, and C. M. Butler, “Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains,” IEEE Trans. Antenn. Propag.32(3), 276–281 (1984). [CrossRef]
  29. R. E. Hodges and Y. Rahmat-Samii, “The evaluation of MFIE integrals with the use of vector triangle basis functions,” Microw. Opt. Technol. Lett.14(1), 9–14 (1997). [CrossRef]
  30. R. D. Graglia, “On the numerical integration of the linear shape functions times the 3-D green’s function or its gradient on a plane triangle,” IEEE Trans. Antenn. Propag.41(10), 1448–1455 (1993). [CrossRef]
  31. P. Ylä-Oijala and M. Taskinen, “Calculation of CFIE impedance matrix elements with RWG andn^× RWG functions,” IEEE Trans. Antenn. Propag.51(8), 1837–1846 (2003). [CrossRef]
  32. A. Ishimaru, Electromagnetic Wave Propagation, Radiation and Scattering (Prentice-Hall, 1991).
  33. Y. Saad and M. Schultz, “Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAMJ. Sci. Statist. Comput.7(3), 856–869 (1986). [CrossRef]
  34. T. W. Lloyd, J. M. Song, and M. Yang, “Numerical study of surface integral formulations for low-contrast objects,” IEEE Antennas Wirel. Propag. Lett.4(1), 482–485 (2005). [CrossRef]
  35. P. Ylä-Oijala and M. Taskinen, “Improving conditioning of electromagnetic surface integral equations using normalized field quantities,” IEEE Trans. Antenn. Propag.55(1), 178–185 (2007). [CrossRef]
  36. Y. A. Liu and W. C. Chew, “Stability of surface integral equation for left-handed materials,” IEEE Trans. Microw. Antennas Propag.1(1), 84–89 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited