OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 9264–9275

Design proposal for a low loss in-plane active photonic crystal waveguide with vertical electrical carrier injection

Roman Kappeler, Peter Kaspar, Peter Friedli, and Heinz Jäckel  »View Author Affiliations

Optics Express, Vol. 20, Issue 8, pp. 9264-9275 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2045 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an active waveguide design that provides both low propagation losses (< 20 dB/cm) and the capability for electrical pumping of the photonic crystal waveguide with a vertical contacting scheme. A careful estimation of a large number of parameters is required in order to obtain both properties. The proposed device supports single mode operation at the telecom wavelength λ = 1550 nm and is suitable for the implementation of in-plane active photonic crystal devices, such as semiconductor optical amplifiers and lasers.

© 2012 OSA

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(130.3120) Integrated optics : Integrated optics devices
(130.5296) Integrated optics : Photonic crystal waveguides
(230.5298) Optical devices : Photonic crystals
(230.4480) Optical devices : Optical amplifiers

ToC Category:
Photonic Crystals

Original Manuscript: January 24, 2012
Revised Manuscript: March 29, 2012
Manuscript Accepted: March 30, 2012
Published: April 6, 2012

Roman Kappeler, Peter Kaspar, Peter Friedli, and Heinz Jäckel, "Design proposal for a low loss in-plane active photonic crystal waveguide with vertical electrical carrier injection," Opt. Express 20, 9264-9275 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. de Rossi, I. Sagnes, L. Legratiet, A. Talneau, A. Berrier, M. Mulot, S. Anand, and J. L. Gentner, “Longitudinal mode selection in constricted photonic crystal guides and electrically injected lasers,” IEEE J. Lightwave Technol.23, 1363–1368 (2005). [CrossRef]
  2. S. Mahnkopf, R. März, M. Kamp, Guang-Hua Duan, F. Lelarge, and A. Forchel, “Tunable photonic crystal coupled-cavity laser.” IEEE J. Quantum Electron.40, 1306–1314 (2004). [CrossRef]
  3. A. Talneau, L. LeGratiet, J. L. Gentner, A. Berrier, M. Mulot, S. Anand, and S. Olivier, “High external efficiency in a monomode full-photonic-crystal laser under continuous wave electrical injection,” Appl. Phys. Lett.85, 1913–1915 (2004). [CrossRef]
  4. T. D. Happ, M. Kamp, A. Forchel, J. L. Gentner, and L. Goldstein, “Two-dimensional photonic crystal coupled-defect laser diode,” Appl. Phys. Lett.82, 4–6 (2003). [CrossRef]
  5. A. Talneau, M. Mulot, S. Anand, S. Olivier, M. Agio, M. Kafesaki, and C. M. Soukoulis, “Modal behavior of single-line photonic crystal guiding structures on InP substrate,” Photonics Nanostruct. Fundam. Appl.2, 1–10 (2004). [CrossRef]
  6. R. Kappeler, P. Kaspar, and H. Jäckel, “Propagation loss computation of W1 photonic crystal waveguides using the cutback technique with the 3D-FDTD method,” Photonics Nanostruct. Fundam. Appl.9, 235–247 (2011). [CrossRef]
  7. Y. Sugimoto, Y. Tanaka, N. Ikeda, Y. Nakamura, K. Asakawa, and K. Inoue, “Low propagation loss of 0.76 dB/mm in GaAs-based single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length,” Opt. Express12, 1090–1096 (2004). [CrossRef] [PubMed]
  8. L. O’Faolain, X. Yuan, D. Macintyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett.421454–1455 (2006). [CrossRef]
  9. S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express11, 2927–2939 (2003). [CrossRef] [PubMed]
  10. E. Dulkeith, S. J. McNab, and Y. A. Vlasov, “Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides,” Phys. Rev. B72, 115102 (2005). [CrossRef]
  11. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučkovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5, 297–300 (2011). [CrossRef]
  12. H. Park, S. Kim, S. Kwon, Y. Ju, J. Yang, J. Baek, and Y. Lee, “Electrically driven single-cell photonic crystal laser,” Science305, 1444–1447 (2004). [CrossRef] [PubMed]
  13. A. Berrier, M. Mulot, G. Malm, M. Oestling, and S. Anand, “Electrical conduction through a 2D InP-based photonic crystal,” Proceedings of SPIE6322, J1–J10 (2006). [CrossRef]
  14. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals - Molding the Flow of Light, 2nd ed. (Princeton University Press, 2007).
  15. R. März, Integrated Optics, Design and Modeling (Artech House Publishers, 1994).
  16. P. Kaspar, R. Kappeler, D. Erni, and H. Jäckel, “Relevance of the light line in planar photonic crystal waveguides with weak vertical confinement,” Opt. Express19, 24344–24353 (2011). [CrossRef] [PubMed]
  17. B. Lombardet, L. A. Dunbar, R. Ferrini, and R. Houdré, “Fourier analysis of bloch wave propagation in photonic crystals.” J. Opt. Soc. Am. B22, 1179–1190 (2005). [CrossRef]
  18. W. Kuang and J. D. O’Brien, “Reducing the out-of-plane radiation loss of photonic crystal waveguides on high-index substrates,” Opt. Lett.29, 860–862 (2004). [CrossRef] [PubMed]
  19. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010). [CrossRef]
  20. B. Jiang, W. Zhou, W. Chen, A. Liu, and W. Zheng, “Improved fake mode free plane wave expansion method,” Opt. Lett.36, 2788–2790 (2011). [CrossRef] [PubMed]
  21. R. Kappeler, P. Kaspar, and H. Jäckel, “Loss-relevant structural imperfections in substrate-type photonic crystal waveguides,” IEEE J. Lightwave Technol.29, 3156–3166 (2011). [CrossRef]
  22. G. K. Wachutka, “Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling,” IEEE Trans. Comput.-Aided Des.9, 1141–1149 (1990). [CrossRef]
  23. G. L. Tan, N. Bewtra, K. Lee, and J. M. Xu, “A two-dimensional nonisothermal finite element simulation of laser diodes,” IEEE J. Quantum Electron.29, 822–835 (1993). [CrossRef]
  24. The non-radiative recombination rate was estimated by solving J = Bn2 +Cn3 using the radiative recombination coefficient B = 0.96 × 10−10cm3/s and the Auger coefficient C = 7 × 10−29cm6/s for In0.53Ga0.47As [25].
  25. M. Levinshtein, S. Rumyantsev, and M. Shureditors, Handbook Series on Semiconductor Parameters (World Scientific, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited