OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 10106–10114

A scheme for detecting the atom-field coupling constant in the Dicke superradiation regime using hybrid cavity optomechanical system

Yueming Wang, Bin Liu, Jinling Lian, and Jiuqing Liang  »View Author Affiliations


Optics Express, Vol. 20, Issue 9, pp. 10106-10114 (2012)
http://dx.doi.org/10.1364/OE.20.010106


View Full Text Article

Enhanced HTML    Acrobat PDF (731 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We proposed a scheme for detecting the atom-field coupling constant in the Dicke superradiation regime based on a hybrid cavity optomechanical system assisted by an atomic gas. The critical behavior of the Dicke model was obtained analytically using the spin-coherent-state representation. Without regard to the dynamics of cavity field an analytical formula of one-to-one correspondence between movable mirror’s steady position and atom-field coupling constant for a given number of atoms is obtained. Thus the atom-field coupling constant can be probed by measuring the movable mirror’s steady position, which is another effect of the cavity optomechanics.

© 2012 OSA

OCIS Codes
(220.4880) Optical design and fabrication : Optomechanics
(270.0270) Quantum optics : Quantum optics
(270.6630) Quantum optics : Superradiance, superfluorescence

ToC Category:
Quantum Optics

History
Original Manuscript: February 10, 2012
Revised Manuscript: April 10, 2012
Manuscript Accepted: April 11, 2012
Published: April 18, 2012

Citation
Yueming Wang, Bin Liu, Jinling Lian, and Jiuqing Liang, "A scheme for detecting the atom-field coupling constant in the Dicke superradiation regime using hybrid cavity optomechanical system," Opt. Express 20, 10106-10114 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-9-10106


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Lebedew, “Experimental examination of light pressure,” Ann. Phys. (Leipzig)6, 433–458 (1901).
  2. E. F. Nichols and G. F. Hull, “A preliminary communication on the pressure of heat and light radiation,” Phys. Rev.13, 307 (1901).
  3. T. Corbitt and N. Mavalvala, “Quantum noise in gravitational-wave interferometers,” J. Opt. B: Quantum Semiclass. Opt6, S675–S683 (2004). [CrossRef]
  4. T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, “An all-optical trap for a gram-scale mirror,” Phys. Rev. Lett.98, 150802 (2007). [CrossRef] [PubMed]
  5. S. Gigan, H. R. Bohm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Cooling of a micromirror by radiation pressure,” Nature444, 67–70 (2006). [CrossRef] [PubMed]
  6. P. F. Cohadon, A. Heidmann, and M. Pinard, “Cooling of a mirror by radiation pressure,” Phys. Rev. Lett.833174 (1999). [CrossRef]
  7. F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum theory of cavity-assisted sideband cooling of mechanical motion,” Phys. Rev. Lett.99, 093902 (2007). [CrossRef] [PubMed]
  8. I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of ground state cooling of a mechanical oscillator using dynamical backaction,” Phys. Rev. Lett.99, 093901 (2007). [CrossRef] [PubMed]
  9. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science321, 1172–1176 (2008). [CrossRef] [PubMed]
  10. J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478, 89–92 (2011). [CrossRef] [PubMed]
  11. D. Teufe, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature475, 359–363 (2011). [CrossRef]
  12. K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics,” Physics Today58, 36–42 (2005). [CrossRef]
  13. S. Bose, K. Jacobs, and P. L. Knight, “Preparation of nonclassical states in cavities with a moving mirror,” Phys. Rev. A56, 4175 (1997). [CrossRef]
  14. W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards quantum superpositions of a mirror,” Phys. Rev. Lett.91, 130401 (2003). [CrossRef] [PubMed]
  15. F. Khalili, S. Danilishin, H. Miao, H. Müller-Ebhardt, H. Yang, and Y. Chen, “Preparing a mechanical oscillator in non-Gaussian quantum states,” Phys. Rev. Lett.105, 070403 (2010). [CrossRef] [PubMed]
  16. D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett.98, 030405 (2007). [CrossRef] [PubMed]
  17. C. Genes, D. Vitali, and P. Tombesi, “Emergence of atom-light-mirror entanglement inside an optical cavity,” Phys. Rev. A77, 050307 (2008). [CrossRef]
  18. L. Zhou, Y. Han, J. Jing, and W. Zhang, “Entanglement of nanomechanical oscillators and two-mode fields induced by atomic coherence,” Phys. Rev. A83, 052117 (2011). [CrossRef]
  19. M. Ludwig, K. Hammerer, and F. Marquardt, “Entanglement of mechanical oscillators coupled to a nonequilibrium environment,” Phys. Rev. A82, 012333 (2010). [CrossRef]
  20. K. Børkje, A. Nunnenkamp, and S. M. Girvin, “Proposal for entangling remote micromechanical oscillators via optical measurements,” Phys. Rev. Lett.107, 123601 (2011). [CrossRef] [PubMed]
  21. S. Mancini, V. Giovannetti, D. Vitali, and P. Tombesi, “Entangling macroscopic oscillators exploiting radiation pressure,” Phys. Rev. Lett.88, 120401 (2002). [CrossRef] [PubMed]
  22. L. Tian and P. Zoller, “Coupled ion-nanomechanical systems,” Phys. Rev. Lett.93, 266403 (2004). [CrossRef]
  23. K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett.103, 063005 (2009). [CrossRef] [PubMed]
  24. P. Treutlein, D. Hunger, S. Camerer, T. W. Hänsch, and J. Reichel, “Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip,” Phys. Rev. Lett.99, 140403 (2007). [CrossRef] [PubMed]
  25. F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science322, 235–238 (2008). [CrossRef] [PubMed]
  26. A. B. Bhattacherjee, “Cavity quantum optomechanics of ultracold atoms in an optical lattice: normal-mode splitting,” Phys. Rev. A80, 043607 (2009). [CrossRef]
  27. D. Hunger, S. Camerer, T. W. Hänsch, D. König, J. P. Kotthaus, J. Reichel, and P. Treutlein, “Resonant coupling of a Bose-Einstein condensate to a micromechanical oscillator,” Phys. Rev. Lett.104, 143002 (2010). [CrossRef] [PubMed]
  28. S. K. Steinke, S. Singh, M. E. Tasgin, P. Meystre, K. C. Schwab, and M. Vengalattore, “Quantum-measurement backaction from a Bose-Einstein condensate coupled to a mechanical oscillator,” Phys. Rev. A84, 023841 (2011). [CrossRef]
  29. H. Ian, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Cavity optomechanical coupling assisted by an atomic gas,” Phys. Rev. A78, 013824 (2008). [CrossRef]
  30. Y. Chang and C. P. Sun, “Analog of the electromagnetically-induced-transparency effect for two nanomechanical or micromechanical resonators coupled to a spin ensemble,” Phys. Rev. A83, 053834 (2011). [CrossRef]
  31. G. Chen, Y. Zhang, L. Xiao, J.-Q. Liang, and S. Jia, “Strong nonlinear coupling between an ultracold atomic ensemble and a nanomechanical oscillator,” Opt. Express18, 23016–23023 (2010). [CrossRef] [PubMed]
  32. K. Hammerer, M. Aspelmeyer, E. S. Polzik, and P. Zoller, “Establishing Einstein-Poldosky-Rosen channels between nanomechanics and atomic ensembles,” Phys. Rev. Lett.102, 020501 (2009). [CrossRef] [PubMed]
  33. Q. Sun, X.-H. Hu, W. M. Liu, X. C. Xie, and A.-C. Ji, “Effect on cavity optomechanics of the interaction between a cavity field and a one-dimensional interacting bosonic gas,” Phys. Rev. A84, 023822 (2011). [CrossRef]
  34. Q. Sun, X.-H. Hu, A.-C. Ji, and W. M. Liu, “Dynamics of a degenerate Fermi gas in a one-dimensional optical lattice coupled to a cavity,” Phys. Rev. A83, 043606 (2011). [CrossRef]
  35. R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev.93, 99–110 (1954). [CrossRef]
  36. K. Hepp and E. H. Lieb, “On the superradiant phase transition for molecules in a quantized radiation field: the Dicke maser model,” Annals Phys.(N.Y.)76, 360–404 (1973). [CrossRef]
  37. Y. K. Wang and F. T. Hioes, “Phase transition in the Dicke model of superradiance,” Phys. Rev. A7, 831–836 (1973). [CrossRef]
  38. F. T. Hioes, “Phase transitions in some generalized Dicke models of superradiance,” Phys. Rev. A8, 1440–1445 (1973). [CrossRef]
  39. C. Emary and T. Brandes, “Quantum chaos triggered by precursors of a quantum phase transition: the Dicke model,” Phys. Rev. Lett.90, 044101 (2003). [CrossRef] [PubMed]
  40. C. Emary and T. Brandes, “Chaos and the quantum phase transition in the Dicke model,” Phys. Rev. E67, 066203 (2003). [CrossRef]
  41. N. Lambert, C. Emary, and T. Brandes, “Entanglement and entropy in a spin-boson quantum phase transition,” Phys. Rev. A71, 053804 (2005). [CrossRef]
  42. G. D. Chiara, M. Paternostro, and G. M. Palma, “Entanglement detection in hybrid optomechanical systems,” Phys. Rev. A83, 052324–052329 (2011). [CrossRef]
  43. G. Chen, J. Li, and J.-Q. Liang, “Critical property of the geometric phase in the Dicke model,” Phys. Rev. A74, 054101 (2006). [CrossRef]
  44. T. Holstein and H. Primakoff, “Field dependence of the intrinsic domain magnetization of a ferromagnet,” Phys. Rev.58, 1098–1113 (1940). [CrossRef]
  45. J. P. Santos, F. L. Semião, and K. Furuya, “Probing the quantum phase transition in the Dicke model through mechanical vibrations,” Phys. Rev. A82, 063801 (2010). [CrossRef]
  46. E. K. Irish, “Generalized rotating-wave approximation for arbitrarily large coupling,” Phys. Rev. Lett.99, 173601 (2007). [CrossRef] [PubMed]
  47. S. Ashhab and F. Nori, “Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states,” Phys. Rev. A81, 042311 (2010). [CrossRef]
  48. M. Hofheinz, E. M. Weig, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. OConnell, H. Wang, J. M. Martinis, and A. N. Cleland, “Generation of Fock states in a superconducting quantum circuit,” Nature454, 310–314 (2008). [CrossRef] [PubMed]
  49. F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael, “Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system,” Phys. Rev. A75, 013804 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited