OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 10138–10162

Revisiting the Balazs thought experiment in the case of a left-handed material: electromagnetic-pulse-induced displacement of a dispersive, dissipative negative-index slab

Kenneth J. Chau and Henri J. Lezec  »View Author Affiliations


Optics Express, Vol. 20, Issue 9, pp. 10138-10162 (2012)
http://dx.doi.org/10.1364/OE.20.010138


View Full Text Article

Enhanced HTML    Acrobat PDF (2227 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a set of postulates to describe the mechanical interaction between a plane-wave electromagnetic pulse and a dispersive, dissipative slab having a refractive index of arbitrary sign. The postulates include the Abraham electromagnetic momentum density, a generalized Lorentz force law, and a model for absorption-driven mass transfer from the pulse to the medium. These opto-mechanical mechanisms are incorporated into a one-dimensional finite-difference time-domain algorithm that solves Maxwell’s equations and calculates the instantaneous force densities exerted by the pulse onto the slab, the momentum-per-unit-area of the pulse and slab, and the trajectories of the slab and system center-of-mass. We show that the postulates are consistent with conservation of global energy, momentum, and center-of-mass velocity at all times, even for cases in which the refractive index of the slab is negative or zero. Consistency between the set of postulates and well-established conservation laws reinforces the Abraham momentum density as the one true electromagnetic momentum density and enables, for the first time, identification of the correct form of the electromagnetic mass density distribution and development of an explicit model for mass transfer due to absorption, for the most general case of a ponderable medium that is both dispersive and dissipative.

© 2012 OSA

OCIS Codes
(260.2030) Physical optics : Dispersion
(260.2110) Physical optics : Electromagnetic optics
(160.3918) Materials : Metamaterials

ToC Category:
Physical Optics

History
Original Manuscript: January 5, 2012
Revised Manuscript: March 12, 2012
Manuscript Accepted: March 28, 2012
Published: April 18, 2012

Citation
Kenneth J. Chau and Henri J. Lezec, "Revisiting the Balazs thought experiment in the case of a left-handed material: electromagnetic-pulse-induced displacement of a dispersive, dissipative negative-index slab," Opt. Express 20, 10138-10162 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-9-10138


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Maxwell, A Treatise on Electricity and Magnetism (Dover, 1891), Vol. 2.
  2. P. N. Lebedev, “Untersuchungen über die druckkräfte des lichtes,” Ann. Phys.6, 433–458 (1901). [CrossRef]
  3. E. F. Nichols and G. F. Hull, “A preliminary communication on the pressure of heat and light radiation,” Phys. Rev.13, 307–320 (1901).
  4. H. Minkowski, “Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern,” Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl.53–111 (1908).
  5. K. J. Chau and H. J. Lezec, “Re-visiting the Balazs thought experiment in the presence of loss: electromagnetic-pulse-induced displacement of a positive-index slab having arbitrary complex permittivity and permeability,” Appl. Phys. A105, 267–281 (2011). [CrossRef]
  6. M. Abraham, “Zur Elektrodynamik bewegter Körper,” R. C. Circ. Mat. Palermo28, 1–28 (1909). [CrossRef]
  7. R. N. C. Pfeifer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Momentum of an electromagentic wave in dielectric media,” Rev. Mod. Phys.79, 1197–1216 (2007). [CrossRef]
  8. P. Penfield and H. A. Haus, Electrodynamics of Moving Media (M.I.T., 1960).
  9. S. R. dr Groot and L. G. Suttorp, Foundations of Electrodynamics (North Holland, 1972).
  10. R. Peierls, “The momentum of light in a refracting medium,” Proc. R. Soc. Lond. A347, 475–491 (1976). [CrossRef]
  11. P. W. Milonni and W. Boyd, “Recoil and photon momentum in a dielectric,” Laser Phys.15, 1–7 (2005).
  12. S. Stallinga, “Energy and momentum of light in dielectric media,” Phys. Rev. E73, 026606 (2006). [CrossRef]
  13. B. A. Kemp, J. A. Kong, and T. M. Grzegorczyk, “Reversal of wave momentum in isotropic left-handed media,” Phys. Rev. A75, 053810 (2007). [CrossRef]
  14. P. L. Saldanha, “Division of the momentum of electromagnetic waves in linear media into electromagnetic and material parts,” Opt. Express18, 2258–2268 (2010). [CrossRef] [PubMed]
  15. J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A8, 14–21 (1973). [CrossRef]
  16. N. L. Balazs, “The energy-momentum tensor of the electromagnetic field inside matter,” Phys. Rev.91, 408–411 (1953). [CrossRef]
  17. A. Einstein, “The principle of conversation of motion of the center of gravity and the inertia of energy,” Ann. Phys.20, 627–633 (1906). [CrossRef]
  18. V. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp.10, 509–514 (1968). [CrossRef]
  19. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (1999). [CrossRef]
  20. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett.32, 53–55 (2007). [CrossRef]
  21. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett.30, 3356–3358 (2005). [CrossRef]
  22. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science316, 430–432 (2007). [CrossRef] [PubMed]
  23. M. Mansuripur and A. R. Zakharian, “Energy, momentum, and force in classical electrodynamics: application to negative-index media,” Proc. SPIEOP101, 73920Q-1 (2009).
  24. M. Mansuripur and A. R. Zakharian, “Energy, momentum, and force in classical electrodynamics: application to negative-index media,” Opt. Commun.283, 4594–4600 (2010). [CrossRef]
  25. R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E64, 056625 (2001). [CrossRef]
  26. R. W. Ziolkowski, “Superluminal transmission of information through an electromagnetic metamaterial,” Phys. Rev. E63, 046604 (2001). [CrossRef]
  27. R. A. Depine and A. Lakhtakia, “A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity,” Microw. Opt. Technol. Lett.41, 315–316 (2004). [CrossRef]
  28. A. Einstein and J. Laub, “On the ponderomotive forces exerted on bodies at rest in the electromagnetic field,” Ann. Phys.26, 541–550 (1908). [CrossRef]
  29. M. Mansuripur, “Radiation pressure and the linear momentum of the electromagnetic field in magnetic media,” Opt. Express15, 13502–13518 (2007). [CrossRef] [PubMed]
  30. M. Mansuripur and A. R. Zakharian, “Maxwell’s macroscopic equations, the energy-momentum postulates, and the Lorentz law of force,” Phys. Rev. E79, 026608 (2009). [CrossRef]
  31. M. Mansuripur, “Resolution of the Abraham-Minkowski controversy,” Opt. Commun.283, 1997–2005 (2010). [CrossRef]
  32. W. Shockley and R. P. James, ““Try simplest cases” discovery of “hidden momentum” forces on “magnetic currents”,” Phys. Rev. Lett.18, 876–879 (1967). [CrossRef]
  33. I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep.52, 133–201 (1979). [CrossRef]
  34. B. A. Kemp, “Resolution of the Abraham-Minkowski debate: implications for the electromagnetic wave theory of light in matter,” J. Appl. Phys.109, 111101 (2011). [CrossRef]
  35. R. Ruppin, “Electromagnetic energy density in a dispersive and absorptive material,” Phys. Lett. A299, 309–312 (2002). [CrossRef]
  36. R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” J. Phys. A3, 233–245 (1970). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited