OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 9382–9395

Surpassing digital holography limits by lensless object scanning holography

Vicente Micó, Carlos Ferreira, and Javier García  »View Author Affiliations


Optics Express, Vol. 20, Issue 9, pp. 9382-9395 (2012)
http://dx.doi.org/10.1364/OE.20.009382


View Full Text Article

Enhanced HTML    Acrobat PDF (1587 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present lensless object scanning holography (LOSH) as a fully lensless method, capable of improving image quality in reflective digital Fourier holography, by means of an extremely simplified experimental setup. LOSH is based on the recording and digital post-processing of a set of digital lensless holograms and results in a synthetic image with improved resolution, field of view (FOV), signal-to-noise ratio (SNR), and depth of field (DOF). The superresolution (SR) effect arises from the generation of a synthetic aperture (SA) based on the linear movement of the inspected object. The same scanning principle enlarges the object FOV. SNR enhancement is achieved by speckle suppression and coherent artifacts averaging due to the coherent addition of the multiple partially overlapping bandpass images. And DOF extension is performed by digital refocusing to different object’s sections. Experimental results showing an impressive image quality improvement are reported for a one-dimensional reflective resolution test target.

© 2012 OSA

OCIS Codes
(090.4220) Holography : Multiplex holography
(100.2000) Image processing : Digital image processing
(100.6640) Image processing : Superresolution
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: February 3, 2012
Revised Manuscript: March 9, 2012
Manuscript Accepted: March 11, 2012
Published: April 9, 2012

Citation
Vicente Micó, Carlos Ferreira, and Javier García, "Surpassing digital holography limits by lensless object scanning holography," Opt. Express 20, 9382-9395 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-9-9382


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. P. Yaroslavsky, Digital Holography and Digital Image Processing: Principles, Methods, Algorithms (Kluwer Academic, 2003).
  2. U. Schnars and W. P. O. Jüpter, Digital Holography (Springer-Verlag, Heidelberg, 2005).
  3. J. W. Goodman, Speckle Phenomena: Theory and Applications (Roberts & Company, 2006).
  4. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett.11(3), 77–79 (1967).
  5. T. Huang, “Digital holography,” Proc. IEEE59(9), 1335–1346 (1971).
  6. F. Le Clerc, M. Gross, and L. Collot, “Synthetic-aperture experiment in the visible with on-axis digital heterodyne holography,” Opt. Lett.26(20), 1550–1552 (2001).
  7. J. H. Massig, “Digital off-axis holography with a synthetic aperture,” Opt. Lett.27(24), 2179–2181 (2002).
  8. P. Almoro, G. Pedrini, and W. Osten, “Aperture synthesis in phase retrieval using a volume-speckle field,” Opt. Lett.32(7), 733–735 (2007).
  9. J. Di, J. Zhao, H. Jiang, P. Zhang, Q. Fan, and W. Sun, “High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning,” Appl. Opt.47(30), 5654–5659 (2008).
  10. V. Micó, L. Granero, Z. Zalevsky, and J. García, “Superresolved phase-shifting Gabor holography by CCD shift,” J. Opt. A, Pure Appl. Opt.11(12), 125408 (2009).
  11. B. Katz and J. Rosen, “Super-resolution in incoherent optical imaging using synthetic aperture with Fresnel elements,” Opt. Express18(2), 962–972 (2010).
  12. C. Yuan, H. Zhai, and H. Liu, “Angular multiplexing in pulsed digital holography for aperture synthesis,” Opt. Lett.33(20), 2356–2358 (2008).
  13. P. Feng, X. Wen, and R. Lu, “Long-working-distance synthetic aperture Fresnel off-axis digital holography,” Opt. Express17(7), 5473–5480 (2009).
  14. L. Granero, V. Micó, Z. Zalevsky, and J. García, “Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information,” Appl. Opt.49(5), 845–857 (2010).
  15. V. Micó and Z. Zalevsky, “Superresolved digital in-line holographic microscopy for high-resolution lensless biological imaging,” J. Biomed. Opt.15(4), 046027 (2010).
  16. L. Granero, Z. Zalevsky, and V. Micó, “Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array,” Opt. Lett.36(7), 1149–1151 (2011).
  17. Y. Kuznetsova, A. Neumann, and S. R. Brueck, “Imaging interferometric microscopy-approaching the linear systems limits of optical resolution,” Opt. Express15(11), 6651–6663 (2007).
  18. V. Micó, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express16(23), 19260–19270 (2008).
  19. T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express17(10), 7873–7892 (2009).
  20. M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett.36(2), 148–150 (2011).
  21. A. Calabuig, V. Micó, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure super-resolved interferometric microscopy by red-green-blue multiplexing,” Opt. Lett.36(6), 885–887 (2011).
  22. C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett.81(17), 3143–3145 (2002).
  23. M. S. Hezaveh, M. R. Riahi, R. Massudi, and H. Latifi, “Digital holographic scanning of large objects using a rotating optical slab,” Int. J. Imaging Syst. Technol.16(6), 258–261 (2006).
  24. M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express16(21), 17107–17118 (2008).
  25. L. Granero, V. Micó, Z. Zalevsky, and J. García, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express17(17), 15008–15022 (2009).
  26. M. Paturzo and P. Ferraro, “Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography,” Opt. Lett.34(23), 3650–3652 (2009).
  27. R. Binet, J. Colineau, and J.-C. Lehureau, “Short-range synthetic aperture imaging at 633 nm by digital holography,” Appl. Opt.41(23), 4775–4782 (2002).
  28. Y. Zhang, X. Lu, Y. Luo, L. Zhong, and C. She, “Synthetic aperture holography by movement of object,” Proc. SPIE5636, 581–588 (2005).
  29. C. Ventalon and J. Mertz, “Quasi-confocal fluorescence sectioning with dynamic speckle illumination,” Opt. Lett.30(24), 3350–3352 (2005).
  30. J. García, Z. Zalevsky, and D. Fixler, “Synthetic aperture superresolution by speckle pattern projection,” Opt. Express13(16), 6073–6078 (2005).
  31. P. Almoro, G. Pedrini, and W. Osten, “Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field,” Appl. Opt.45(34), 8596–8605 (2006).
  32. A. Anand, V. K. Chhaniwal, P. Almoro, G. Pedrini, and W. Osten, “Shape and deformation measurements of 3D objects using volume speckle field and phase retrieval,” Opt. Lett.34(10), 1522–1524 (2009).
  33. P. F. Almoro and S. G. Hanson, “Wavefront sensing using speckles with fringe compensation,” Opt. Express16(11), 7608–7618 (2008).
  34. F. Dubois, L. Joannes, and J.-C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt.38(34), 7085–7094 (1999).
  35. J. Maycock, B. M. Hennelly, J. B. McDonald, Y. Frauel, A. Castro, B. Javidi, and T. J. Naughton, “Reduction of speckle in digital holography by discrete Fourier filtering,” J. Opt. Soc. Am. A24(6), 1617–1622 (2007).
  36. T. Nomura, M. Okamura, E. Nitanai, and T. Numata, “Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths,” Appl. Opt.47(19), D38–D43 (2008).
  37. L. Rong, W. Xiao, F. Pan, S. Liu, and R. Li, “Speckle noise reduction in digital holography by use of multiple polarization holograms,” Chin. Opt. Lett.8(7), 653–655 (2010).
  38. F. Pan, W. Xiao, S. Liu, F. J. Wang, L. Rong, and R. Li, “Coherent noise reduction in digital holographic phase contrast microscopy by slightly shifting object,” Opt. Express19(5), 3862–3869 (2011).
  39. Y. K. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express17(15), 12285–12292 (2009).
  40. J. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  41. M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University Press, 1999).
  42. T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express14(10), 4300–4306 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (179 KB)      QuickTime
» Media 2: MOV (3036 KB)      QuickTime
» Media 3: MOV (1907 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited