OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 9442–9457

Kinoform microlenses for focusing into microfluidic channels

Hamish C. Hunt and James S. Wilkinson  »View Author Affiliations

Optics Express, Vol. 20, Issue 9, pp. 9442-9457 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2487 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical detection in microflow cytometry requires a tightly focused light beam within a microfluidic channel for effective microparticle analysis. Integrated planar lenses have demonstrated this function, but their design is usually derived from the conventional spherical lens. Compact, efficient, integrated planar kinoform microlenses are proposed for use in microflow cytometry. A detailed design procedure is given and several designs are simulated. A paraxial kinoform lens integrated with a microfluidic channel was then fabricated in a silicate glass material system and characterized for focal position and spotsize, in comparison with light emerging directly from a channel waveguide. Focal spotsizes of 5.6 μm for kinoform lenses have been measured at foci as far as 56 μm into the microfluidic channel.

© 2012 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.3120) Integrated optics : Integrated optics devices
(170.1530) Medical optics and biotechnology : Cell analysis
(080.4225) Geometric optics : Nonspherical lens design

ToC Category:
Integrated Optics

Original Manuscript: February 1, 2012
Revised Manuscript: March 9, 2012
Manuscript Accepted: March 29, 2012
Published: April 10, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Hamish C. Hunt and James S. Wilkinson, "Kinoform microlenses for focusing into microfluidic channels," Opt. Express 20, 9442-9457 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Heikali and D. Di Carlo, “A niche for microfluidics in portable hematology analyzers,” J. Assoc. Lab. Autom.15(4), 319–328 (2010). [CrossRef]
  2. N. Pamme, R. Koyama, and A. Manz, “Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay,” Lab Chip3(3), 187–192 (2003). [CrossRef] [PubMed]
  3. R. S. W. Thomas, P. D. Mitchell, R. O. C. Oreffo, and H. Morgan, “Trapping single human osteoblast-like cells from a heterogeneous population using a dielectrophoretic microfluidic device,” Biomicrofluidics4(2), 022806 (2010). [CrossRef] [PubMed]
  4. K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Logg, and M. Käll, “A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells,” Lab Chip5(4), 431–436 (2005). [CrossRef] [PubMed]
  5. S. J. Hart, A. Terray, T. A. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem.78(9), 3221–3225 (2006). [CrossRef] [PubMed]
  6. D. Holmes, H. Morgan, and N. G. Green, “High throughput particle analysis: Combining dielectrophoretic particle focussing with confocal optical detection,” Biosens. Bioelectron.21(8), 1621–1630 (2006). [CrossRef] [PubMed]
  7. S. Joo, K. H. Kim, H. C. Kim, and T. D. Chung, “A portable microfluidic flow cytometer based on simultaneous detection of impedance and fluorescence,” Biosens. Bioelectron.25(6), 1509–1515 (2010). [CrossRef] [PubMed]
  8. J. S. Kim and F. S. Ligler, “Utilization of microparticles in next-generation assays for microflow cytometers,” Anal. Bioanal. Chem.398(6), 2373–2382 (2010). [CrossRef] [PubMed]
  9. D. Barat, G. Benazzi, M. C. Mowlem, J. M. Ruano, and H. Morgan, “Design, simulation and characterisation of integrated optics for a microfabricated flow cytometer,” Opt. Commun.283(9), 1987–1992 (2010). [CrossRef]
  10. J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip9(13), 1942–1950 (2009). [CrossRef] [PubMed]
  11. Y. Komai, H. Nagano, K. Kodate, K. Okamoto, and T. Kamiya, “Application of arrayed-waveguide grating to compact spectroscopic sensors,” Jpn. J. Appl. Phys.43(8B), 5795–5799 (2004). [CrossRef]
  12. K. Singh, X. T. Su, C. G. Liu, C. Capjack, W. Rozmus, and C. J. Backhouse, “A miniaturized wide-angle 2D cytometer,” Cytometry, Part A69A (4), 307–315 (2006). [CrossRef] [PubMed]
  13. S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip3(1), 40–45 (2003). [CrossRef] [PubMed]
  14. S. K. Hsiung, C. H. Lin, and G. B. Lee, “A microfabricated capillary electrophoresis chip with multiple buried optical fibers and microfocusing lens for multiwavelength detection,” Electrophoresis26(6), 1122–1129 (2005). [CrossRef] [PubMed]
  15. J. Seo and L. Lee, “Disposable integrated microfluidics with self-aligned planar microlenses,” Sens. Actuators B99, 615–622 (2004).
  16. J. Godin, V. Lien, and Y. Lo, “Demonstration of two-dimensional fluidic lens for integration into microfluidic flow cytometers,” Appl. Phys. Lett.89(6), 061106 (2006). [CrossRef]
  17. S. K. Hsiung, C. H. Lee, and G. B. Lee, “Microcapillary electrophoresis chips utilizing controllable micro-lens structures and buried optical fibers for on-line optical detection,” Electrophoresis29(9), 1866–1873 (2008). [CrossRef] [PubMed]
  18. Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip4(4), 372–377 (2004). [CrossRef] [PubMed]
  19. M. Rosenauer, W. Buchegger, I. Finoulst, P. Verhaert, and M. Vellekoop, “Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes,” Microfluid. Nanofluid.10(4), 761–771 (2011). [CrossRef]
  20. H. C. Hunt and J. S. Wilkinson, “Multimode interference devices for focusing in microfluidic channels,” Opt. Lett.36(16), 3067–3069 (2011). [CrossRef] [PubMed]
  21. V. Moreno, J. Roman, and J. Salgueiro, “High efficiency diffractive lenses: Deduction of kinoform profile,” Am. J. Phys.65(6), 556–562 (1997). [CrossRef]
  22. D. A. Buralli, G. M. Morris, and J. R. Rogers, “Optical performance of holographic kinoforms,” Appl. Opt.28(5), 976–983 (1989). [CrossRef] [PubMed]
  23. M. K. McGaugh, C. M. Verber, and R. P. Kenan, “Modified integrated optic Fresnal lens for waveguide-to-fiber coupling,” Appl. Opt.34(9), 1562–1568 (1995). [CrossRef] [PubMed]
  24. H. C. Hunt, “Integrated microlenses and multimode interference devices for microflow cytometers,” PhD Thesis, University of Southampton, UK (2010).
  25. J. Goodman, Fourier Optics, 3rd ed. (Roberts & Company Publishers, 2005).
  26. J. E. Harvey, A. Krywonos, and D. Bogunovic, “Nonparaxial scalar treatment of sinusoidal phase gratings,” J. Opt. Soc. Am. A23(4), 858–865 (2006). [CrossRef] [PubMed]
  27. T. Q. Vu, J. A. Norris, and C. S. Tsai, “Formation of negative-index-change waveguide lenses in LiNbO(3) by using ion milling,” Opt. Lett.13(12), 1141–1143 (1988). [CrossRef] [PubMed]
  28. C. Pitt, S. Reid, S. Reynolds, and J. Skinner, “Waveguiding Fresnel lenses – modeling and fabrication,” J. Mod. Opt.35(6), 1079–1111 (1988). [CrossRef]
  29. K. E. Spaulding and G. M. Morris, “Achromatic waveguide lenses,” Appl. Opt.30(18), 2558–2569 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited