OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 9545–9550

Low-loss plasmonic metamaterial based on epitaxial gold monocrystal film

V. A. Fedotov, T. Uchino, and J. Y. Ou  »View Author Affiliations

Optics Express, Vol. 20, Issue 9, pp. 9545-9550 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1424 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate high-finesse plasmonic metamaterial with strong resonant response in the near-IR spectral range fabricated using a thin low-loss film of gold monocrystal. The monocrystal was grown using specially formulated simplified crystal growth procedure based on epitaxial deposition, which makes it readily accessible to both plasmonics and metamaterials communities.

© 2012 OSA

OCIS Codes
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: January 31, 2012
Revised Manuscript: February 23, 2012
Manuscript Accepted: February 26, 2012
Published: April 11, 2012

Virtual Issues
April 17, 2012 Spotlight on Optics

V. A. Fedotov, T. Uchino, and J. Y. Ou, "Low-loss plasmonic metamaterial based on epitaxial gold monocrystal film," Opt. Express 20, 9545-9550 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago and E. E. Narimanov, “The left hand of brightness: past, present and future of negative index materials,” Nat. Mater.5(10), 759–762 (2006). [CrossRef] [PubMed]
  2. N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science328(5978), 582–583 (2010). [CrossRef] [PubMed]
  3. D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett.95(15), 151102 (2009). [CrossRef]
  4. M. G. Blaber, M. D. Arnold, and M. J. Ford, “Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material,” J. Phys. Condens. Matter21(14), 144211 (2009). [CrossRef] [PubMed]
  5. A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011). [CrossRef] [PubMed]
  6. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett.101(22), 226806 (2008). [CrossRef] [PubMed]
  7. E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express17(10), 8548–8551 (2009). [CrossRef] [PubMed]
  8. S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010). [CrossRef] [PubMed]
  9. M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett.93(11), 113110 (2008). [CrossRef]
  10. A. Green, E. Bauer, R. L. Peck, and J. Dancy, “Stages of epitaxial film formation,” Krist. Tech.5(3), 345–366 (1970). [CrossRef]
  11. B. Lewis, “Physical processes in epitaxial growth,” Thin Solid Films7(3-4), 179–217 (1971). [CrossRef]
  12. K. M. Kunz, A. K. Green, and E. Bauer, “On the formation of single crystal films of F.C.C. metals on alkali halide cleavage planes in ultrahigh vacuum,” Phys. Status Solidi18(1), 441–457 (1966). [CrossRef]
  13. D. J. Stirland, “Electron-bombardment-induced changes in the growth and epitaxy of evaporated gold films,” Appl. Phys. Lett.8(12), 326–328 (1966). [CrossRef]
  14. W. A. Jesser and J. W. Matthews, “Growth of copper, silver, and gold on twelve Alkali halides cleaved in vacuum,” J. Cryst. Growth5(2), 83–89 (1969). [CrossRef]
  15. Model SPEC. SOU/150103/TPG, capable of depositing thin multi-layers of metallic and dielectric layers (specially customized for University of Southampton).
  16. N. W. Ashcroft and N. D. Mermin, Solid State Physics, 7th ed. (Wiley, New York, 1996).
  17. A. R. West, Basic Solid State Chemistry (Wiley, New York, 1994).
  18. M. Hegner, P. Wagner, and G. Semenza, “Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy,” Surf. Sci.291(1-2), 39–46 (1993). [CrossRef]
  19. M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett.93(11), 113110 (2008). [CrossRef]
  20. V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express16(2), 1186–1195 (2008). [CrossRef] [PubMed]
  21. J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films516(22), 7979–7989 (2008). [CrossRef]
  22. N. P. Blanchard, C. Smith, D. S. Martin, D. J. Hayton, T. E. Jenkins, and P. Weightman, “High-resolution measurements of the bulk dielectric constants of single crystal gold with application to reflection anisotropy spectroscopy,” Phys. Status Solidi, C Conf. Crit. Rev.0(8), 2931–2937 (2003). [CrossRef]
  23. D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, Orlando, Fla., 1985).
  24. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  25. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007). [CrossRef] [PubMed]
  26. N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B80(4), 041102 (2009). [CrossRef]
  27. V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett.104(22), 223901 (2010). [CrossRef] [PubMed]
  28. N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency,” Opt. Photon. News20(10), 22–27 (2009). [CrossRef]
  29. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008). [CrossRef] [PubMed]
  30. A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett.104(15), 153902 (2010). [CrossRef] [PubMed]
  31. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics2(6), 351–354 (2008). [CrossRef]
  32. E. Plum, K. Tanaka, W. T. Chen, V. A. Fedotov, D. P. Tsai, and N. I. Zheludev, “A combinatorial approach to metamaterials discovery,” J. Opt.13(5), 055102 (2011). [CrossRef]
  33. I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett.10(10), 4222–4227 (2010). [CrossRef] [PubMed]
  34. H. H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data5(2), 329–349 (1976). [CrossRef]
  35. P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited