OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S1 — Jan. 2, 2012
  • pp: A125–A132

Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics

Chenxi Lin, Ningfeng Huang, and Michelle L. Povinelli  »View Author Affiliations


Optics Express, Vol. 20, Issue S1, pp. A125-A132 (2012)
http://dx.doi.org/10.1364/OE.20.00A125


View Full Text Article

Enhanced HTML    Acrobat PDF (1650 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We carry out a systematic numerical study of the effects of aperiodicity on silicon nanorod anti-reflection structures. We use the scattering matrix method to calculate the average reflection loss over the solar spectrum for periodic and aperiodic arrangements of nanorods. We find that aperiodicity can either improve or deteriorate the anti-reflection performance, depending on the nanorod diameter. We use a guided random-walk algorithm to design optimal aperiodic structures that exhibit lower reflection loss than both optimal periodic and random aperiodic structures.

© 2011 OSA

OCIS Codes
(350.6050) Other areas of optics : Solar energy
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Photovoltaics

History
Original Manuscript: October 24, 2011
Revised Manuscript: December 5, 2011
Manuscript Accepted: December 8, 2011
Published: December 22, 2011

Citation
Chenxi Lin, Ningfeng Huang, and Michelle L. Povinelli, "Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics," Opt. Express 20, A125-A132 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-S1-A125


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys.62(1), 243–249 (1987). [CrossRef]
  2. S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep.69(1-3), 1–35 (2010). [CrossRef]
  3. P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology8(2), 53–56 (1997). [CrossRef]
  4. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett.24(20), 1422–1424 (1999). [CrossRef] [PubMed]
  5. K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology11(3), 161–164 (2000). [CrossRef]
  6. H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks,” Appl. Phys. Lett.88(20), 201116 (2006). [CrossRef]
  7. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett.93(13), 133108 (2008). [CrossRef]
  8. Y.-H. Pai, Y.-C. Lin, J.-L. Tsai, and G.-R. Lin, “Nonlinear dependence between the surface reflectance and the duty-cycle of semiconductor nanorod array,” Opt. Express19(3), 1680–1690 (2011). [CrossRef] [PubMed]
  9. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007). [CrossRef] [PubMed]
  10. H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl.15(5), 415–423 (2007). [CrossRef]
  11. S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovolt. Res. Appl.18(3), 195–203 (2010). [CrossRef]
  12. H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys.46(6A), 3333–3336 (2007). [CrossRef]
  13. P. Seliger, M. Mahvash, C. Wang, and A. F. J. Levi, “Optimization of aperiodic dielectric structures,” J. Appl. Phys.100(3), 034310–034316 (2006). [CrossRef]
  14. D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E.D.Palik, ed. (Academic, Orlando, Fla., 1985).
  15. M. Li, X. Hu, Z. Ye, K. M. Ho, J. Cao, and M. Miyawaki, “Higher-order incidence transfer matrix method used in three-dimensional photonic crystal coupled-resonator array simulation,” Opt. Lett.31(23), 3498–3500 (2006). [CrossRef] [PubMed]
  16. J. Kupec and B. Witzigmann, “Dispersion, wave propagation and efficiency analysis of nanowire solar cells,” Opt. Express17(12), 10399–10410 (2009). [CrossRef] [PubMed]
  17. B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, C. M. de Sterke, and R. C. McPhedran, “Modal analysis of enhanced absorption in silicon nanowire arrays,” Opt. Express19(S5Suppl 5), A1067–A1081 (2011). [CrossRef] [PubMed]
  18. B. L. Sopori and R. A. Pryor, “Design of antireflection coatings for textured silicon solar cells,” Sol. Cells8(3), 249–261 (1983). [CrossRef]
  19. M. Schulte, K. Bittkau, K. Jager, M. Ermes, M. Zeman, and B. E. Pieters, “Angular resolved scattering by a nano-textured ZnO/silicon interface,” Appl. Phys. Lett.99(11), 111107 (2011). [CrossRef]
  20. K. Bittkau, M. Schulte, M. Klein, T. Beckers, and R. Carius, “Modeling of light scattering properties from surface profile in thin-film solar cells by Fourier transform techniques,” Thin Solid Films519(19), 6538–6543 (2011). [CrossRef]
  21. C. Lin and M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express19(S5Suppl 5), A1148–A1154 (2011). [CrossRef] [PubMed]
  22. T. C. Choy, Effective Medium Theory: Principles and Applications (Calrendon, 1999).
  23. H. Bao and X. Ruan, “Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications,” Opt. Lett.35(20), 3378–3380 (2010). [CrossRef] [PubMed]
  24. D. Shir, J. Yoon, D. Chanda, J.-H. Ryu, and J. A. Rogers, “Performance of ultrathin silicon solar microcells with nanostructures of relief formed by soft imprint lithography for broad band absorption enhancement,” Nano Lett.10(8), 3041–3046 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited