OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S1 — Jan. 2, 2012
  • pp: A28–A38

A solar photovoltaic system with ideal efficiency close to the theoretical limit

Yuan Zhao, Ming-Yu Sheng, Wei-Xi Zhou, Yan Shen, Er-Tao Hu, Jian-Bo Chen, Min Xu, Yu-Xiang Zheng, Young-Pak Lee, David W. Lynch, and Liang-Yao Chen  »View Author Affiliations

Optics Express, Vol. 20, Issue S1, pp. A28-A38 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1201 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In order to overcome some physical limits, a solar system consisting of five single-junction photocells with four optical filters is studied. The four filters divide the solar spectrum into five spectral regions. Each single-junction photocell with the highest photovoltaic efficiency in a narrower spectral region is chosen to optimally fit into the bandwidth of that spectral region. Under the condition of solar radiation ranging from 2.4 SUN to 3.8 SUN (AM1.5G), the measured peak efficiency under 2.8 SUN radiation reaches about 35.6%, corresponding to an ideal efficiency of about 42.7%, achieved for the photocell system with a perfect diode structure. Based on the detailed-balance model, the calculated theoretical efficiency limit for the system consisting of 5 single-junction photocells can be about 52.9% under 2.8 SUN (AM1.5G) radiation, implying that the ratio of the highest photovoltaic conversion efficiency for the ideal photodiode structure to the theoretical efficiency limit can reach about 80.7%. The results of this work will provide a way to further enhance the photovoltaic conversion efficiency for solar cell systems in future applications.

© 2011 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(230.5170) Optical devices : Photodiodes

ToC Category:

Original Manuscript: October 10, 2011
Revised Manuscript: November 5, 2011
Manuscript Accepted: November 6, 2011
Published: November 16, 2011

Yuan Zhao, Ming-Yu Sheng, Wei-Xi Zhou, Yan Shen, Er-Tao Hu, Jian-Bo Chen, Min Xu, Yu-Xiang Zheng, Young-Pak Lee, David W. Lynch, and Liang-Yao Chen, "A solar photovoltaic system with ideal efficiency close to the theoretical limit," Opt. Express 20, A28-A38 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett.90(18), 183516 (2007). [CrossRef]
  2. J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independentlymetamorphic junctions,” Appl. Phys. Lett.93(12), 123505 (2008). [CrossRef]
  3. W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009). [CrossRef]
  4. S. Kurtz and J. Geisz, “Multijunction solar cells for conversion of concentrated sunlight to electricity,” Opt. Express18(S1), A73–A78 (2010). [CrossRef]
  5. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961). [CrossRef]
  6. A. D. Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D. Appl. Phys.13(5), 839–846 (1980). [CrossRef]
  7. C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys.51(8), 4494–4500 (1980). [CrossRef]
  8. G. L. Araújo and A. Marti, “Absolute limiting efficiencies for photovoltaic energy conversion,” Sol. Energy Mater. Sol. Cells33(2), 213–240 (1994). [CrossRef]
  9. A. Martí and G. L. Araujo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Sol. Energy Mater. Sol. Cells43(2), 203–222 (1996). [CrossRef]
  10. A. S. Brown and M. A. Green, “Limiting efficiency for current-constrained two-terminal tandem cell stacks,” Prog. Photovolt. Res. Appl.10(5), 299–307 (2002). [CrossRef]
  11. A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett.78(26), 5014–5017 (1997). [CrossRef]
  12. I. Tobías and A. Luque, “Ideal efficiency of monolithic, series-connected multijunction solar cells,” Prog. Photovolt. Res. Appl.10, 323–329 (2002). [CrossRef]
  13. S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Prog. Photovolt. Res. Appl.16(6), 537–546 (2008). [CrossRef]
  14. E. D. Jackson, “Areas for improvement of the semiconductor solar energy converter,” in Transactions of the Conference on the Use of Solar Energy (University of Arizona Press, 1955), p. 122.
  15. R. L. Moon, L. W. James, H. A. Vander Plas, T. O. Yep, G. A. Antypas, and Y. Chai, “Multigap solar cell requirements and the performance of AlGaAs and Si cells in concentrated sunlight,” in 13th Photovoltaic Specialists Conference (IEEE, 1978), pp. 859–867.
  16. A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009). [CrossRef]
  17. M. A. Green and A. Ho-Baillie, “Forty three percent composite split-spectrum concentrator solar cell efficiency,” Prog. Photovolt. Res. Appl.18(1), 42–47 (2010). [CrossRef]
  18. R. R. Willey, “Achieving narrow bandpass filters which meet the requirements for DWDM,” Thin Solid Films398–399, 1–9 (2001). [CrossRef]
  19. R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective (Morgan Kaufmann, 1999).
  20. L. Y. Chen and D. W. Lynch, “Scanning ellipsometer by rotating polarizer and analyzer,” Appl. Opt.26(24), 5221–5228 (1987). [CrossRef] [PubMed]
  21. D. S. H. Chan and J. C. H. Phang, “Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics,” IEEE Trans. Electron. Devices34(2), 286–293 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited