OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S1 — Jan. 2, 2012
  • pp: A85–A93

Efficiency enhancement of silicon solar cells using a nano-scale honeycomb broadband anti-reflection structure

C.K. Huang, K.W. Sun, and W.-L. Chang  »View Author Affiliations

Optics Express, Vol. 20, Issue S1, pp. A85-A93 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1414 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This experiment demonstrates the process for manufacturing a ZnO honeycomb sub-wavelength structure using nanosphere lithography technology exhibiting excellent anti-reflection properties from the UV to NIR wavelength regions. This honeycomb nanostructure, combined with commercially available crystalline Si solar cells, show substantially improved conversion efficiency from 15.6% to 16.6% using optimized honeycomb sizes and precursor concentrations of ZnO. The present work develops an unsophisticated and economical technique suitable for industrial applications in producing a uniform and low-reflective texture.

© 2011 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(310.1210) Thin films : Antireflection coatings
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: October 19, 2011
Revised Manuscript: November 24, 2011
Manuscript Accepted: December 8, 2011
Published: December 20, 2011

C.K. Huang, K.W. Sun, and W.-L. Chang, "Efficiency enhancement of silicon solar cells using a nano-scale honeycomb broadband anti-reflection structure," Opt. Express 20, A85-A93 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Joo, H. J. Kim, and J. K. Kim, “Broadband antireflection coating covering from visible to near infrared wavelengths by using multilayered nanoporous block copolymer films,” Langmuir26(7), 5110–5114 (2010). [CrossRef] [PubMed]
  2. J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D.-L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett.95(3), 033102 (2009). [CrossRef]
  3. H. Zhou, T. Fan, T. Han, X. Li, J. Ding, D. Zhang, Q. Guo, and H. Ogawa, “Bacteria-based controlled assembly of metal chalcogenide hollow nanostructures with enhanced light-harvesting and photocatalytic properties,” Nanotechnology20(8), 085603 (2009). [CrossRef] [PubMed]
  4. K.-S. Han, J.-H. Shin, W.-Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells95(1), 288–291 (2011). [CrossRef]
  5. Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today5(2), 117–127 (2010). [CrossRef]
  6. J. Y. Chen and K. W. Sun, “Enhancement of the light conversion efficiency of silicon solar cells by using nanoimprint anti-reflection layer,” Sol. Energy Mater. Sol. Cells94(3), 629–633 (2010). [CrossRef]
  7. S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep.69(1-3), 1–35 (2010). [CrossRef]
  8. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007). [CrossRef] [PubMed]
  9. J. Y. Chen, W. L. Chang, C. K. Huang, and K. W. Sun, “Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells,” Opt. Express19(15), 14411–14419 (2011). [CrossRef] [PubMed]
  10. M. Y. Chiu, C. H. Chang, M. A. Tsai, F. Y. Chang, and P. C. Yu, “Improved optical transmission and current matching of a triple-junction solar cell utilizing sub-wavelength structures,” Opt. Express18(S3Suppl 3), A308–A313 (2010). [CrossRef] [PubMed]
  11. C. K. Huang, H. H. Lin, J. Y. Chen, K. W. Sun, and W. L. Chang, “Efficiency enhancement of the poly-silicon solar cell using self-assembled dielectric nanoparticles,” Sol. Energy Mater. Sol. Cells95(8), 2540–2544 (2011). [CrossRef]
  12. J. Zhao, A. Wang, P. Altermatt, and M. A. Green, “Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss,” Appl. Phys. Lett.66(26), 3636 (1995). [CrossRef]
  13. J. H. Zhao, A. H. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett.73(14), 1991–1993 (1998). [CrossRef]
  14. H. Morikawa, D. Niinobe, K. Nishimura, S. Matsuno, and S. Arimoto, “Processes for over 18.5% high-efficiency multi-crystalline silicon solar cell,” Curr. Appl. Phys.10(2), S210–S214 (2010). [CrossRef]
  15. A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. H. Zhao, and A. H. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun.172(1-6), 139–151 (1999). [CrossRef]
  16. E. Manea, E. Budianu, M. Purica, C. Podaru, A. Popescu, I. Cernica, F. Babarada, and C. C. Parvulescu, “SnO2 thin films prepared by sol gel method for ‘Honeycomb’ textured silicon solar cells,” Rom. J. Inform. Sci. Technol10, 25–33 (2007).
  17. X.-T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, and A. Fujishima, “Self-cleaning particle coating with antireflection properties,” Chem. Mater.17(3), 696–700 (2005). [CrossRef]
  18. S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science283(5401), 520–522 (1999). [CrossRef] [PubMed]
  19. B. Kim, J. Bang, S. Jang, D. Kim, and J. Kim, “Surface texturing of GaAs using a nanosphere lithography technique for solar cell applications,” Thin Solid Films518(22), 6583–6586 (2010). [CrossRef]
  20. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett.89(9), 093103 (2006). [CrossRef]
  21. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett.86(6), 063106 (2005). [CrossRef]
  22. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007). [CrossRef]
  23. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007). [CrossRef]
  24. H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett.69(16), 2327–2329 (1996). [CrossRef]
  25. Y. Lalatonne, J. Richardi, and M. P. Pileni, “Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals,” Nat. Mater.3(2), 121–125 (2004). [CrossRef] [PubMed]
  26. K. A. Alim, V. A. Fonoberov, M. Shamsa, and A. A. Balandin, “Micro-Raman investigation of optical phonons in ZnO nanocrystals,” J. Appl. Phys.97(12), 124313 (2005). [CrossRef]
  27. D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett.85(9), 1601–1603 (2004). [CrossRef]
  28. L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angew. Chem. Int. Ed. Engl.42(26), 3031–3034 (2003). [CrossRef] [PubMed]
  29. Structural Colors in Biological Systems, Principles and Applications, eds. S. Kinoshita and S. Yoshioka (Osaka University Press, 2005).
  30. P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the ‘Moth Eye’ principle,” Nature244(5414), 281–282 (1973). [CrossRef]
  31. Y. Zhao, X. T. Zhang, J. Zhai, J. L. He, L. Jiang, Z. Y. Liu, S. Nishimoto, T. Murakami, A. Fujishima, and D. B. Zhu, “Enhanced photocatalytic activity of hierarchically micro-/nano-porous TiO2 films,” Appl. Catal. B83(1-2), 24–29 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited