OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S3 — May. 7, 2012
  • pp: A366–A384

Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems

Ognjen Ilic, Marinko Jablan, John D. Joannopoulos, Ivan Celanovic, and Marin Soljačić  »View Author Affiliations


Optics Express, Vol. 20, Issue S3, pp. A366-A384 (2012)
http://dx.doi.org/10.1364/OE.20.00A366


View Full Text Article

Acrobat PDF (2373 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Near-field thermophotovoltaic (TPV) systems with carefully tailored emitter-PV properties show large promise for a new temperature range (600 – 1200K) solid state energy conversion, where conventional thermoelectric (TE) devices cannot operate due to high temperatures and far-field TPV schemes suffer from low efficiency and power density. We present a detailed theoretical study of several different implementations of thermal emitters using plasmonic materials and graphene. We find that optimal improvements over the black body limit are achieved for low bandgap semiconductors and properly matched plasmonic frequencies. For a pure plasmonic emitter, theoretically predicted generated power density of 14Wcm2 and efficiency of 36% can be achieved at 600K (hot-side), for 0.17eV bandgap (InSb). Developing insightful approximations, we argue that large plasmonic losses can, contrary to intuition, be helpful in enhancing the overall near-field transfer. We discuss and quantify the properties of an optimal near-field photovoltaic (PV) diode. In addition, we study plasmons in graphene and show that doping can be used to tune the plasmonic dispersion relation to match the PV cell bangap. In case of graphene, theoretically predicted generated power density of 6(120)Wcm2 and efficiency of 35(40)% can be achieved at 600(1200)K, for 0.17eV bandgap. With the ability to operate in intermediate temperature range, as well as high efficiency and power density, near-field TPV systems have the potential to complement conventional TE and TPV solid state heat-to-electricity conversion devices.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(240.6680) Optics at surfaces : Surface plasmons
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Thermophotovoltaics

History
Original Manuscript: January 31, 2012
Revised Manuscript: March 4, 2012
Manuscript Accepted: March 5, 2012
Published: March 13, 2012

Citation
Ognjen Ilic, Marinko Jablan, John D. Joannopoulos, Ivan Celanovic, and Marin Soljačić, "Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems," Opt. Express 20, A366-A384 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-S3-A366


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. Rytov, Y.A. Kratsov, and V. I. Tatarskii, Principles of Statistical Radiophysics (Springer-Verlag, 1987).
  2. D. Polder and M. Van Hove, , “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B4, 3303–3314 (1971).
  3. J. B. Pendry, “Radiative exchange of heat between nanostructures,” J. Phys.: Condens. Matter11, 6621–6633 (1999). [CrossRef]
  4. C. H. Park, H. A. Haus, and M. S. Weinberg, “Proximity-enhanced thermal radiation,” J. Phy. D: Appl. Phys.35, 2857–2863 (2002). [CrossRef]
  5. C. Hargreaves, “Anomalous radiative transfer between closely-spaced bodies,” Phys. Lett. A30, 491–492 (1969). [CrossRef]
  6. A. Narayanaswamy, S. Shen, and G. Chen, “Near-field radiative heat transfer between a sphere and a substrate,” Phys. Rev. B78, 115303 (2008). [CrossRef]
  7. S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett.9, 2909–2913 (2009). [CrossRef] [PubMed]
  8. E. Rousseau, A. Siria, G. Jourdan, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics3, 514–517 (2009). [CrossRef]
  9. R. DiMatteo, P. Greiff, D. Seltzer, D. Meulenberg, E. Brown, E. Carlen, K. Kaiser, S. Finberg, H. Nguyen, J. Azarkevich, P. Baldasaro, J. Beausang, L. Danielson, M. Dashiell, D. DePoy, H. Ehsani, W. Topper, and K. Rahner, “Micron-gap thermophotovoltaics (MTPV),” Proc. 6th Conf. Thermophotovoltaic Generation of Electricity (2004).
  10. M. Whale and E. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE Trans. Energy Convers.17, 130–142 (2002). [CrossRef]
  11. M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys.100, 063704 (2006). [CrossRef]
  12. S. Basu, Y.-B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices – a review,” Int. J. Energy Res.31, 689–716 (2007). [CrossRef]
  13. M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energy Convers.26, 686–698 (2011). [CrossRef]
  14. K. Park, S. Basu, W. King, and Z. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transfer109, 305–316 (2008). [CrossRef]
  15. S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res.33, 1203–1232 (2009). [CrossRef]
  16. J. Pan, H. Choy, and C. G. Fonstad, “Very large radiative transfer over small distances from a black body for thermophotovoltaic applications,” IEEE Trans. Electron Devices47, 241–249 (2000). [CrossRef]
  17. A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett.82, 3544–3546 (2003). [CrossRef]
  18. K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and casimir forces revisited in the near field,” Surf. Sci. Rep.57, 59–112 (2005). [CrossRef]
  19. J. R. Dixon and J. M. Ellis, “Optical properties of n-type indium arsenide in the fundamental absorption edge region,” Phys. Rev.123, 1560–1566 (1961). [CrossRef]
  20. G. W. Gobeli and H. Y. Fan, “Infrared absorption and valence band in indium antimonide,” Phys. Rev.119, 613–620 (1960). [CrossRef]
  21. S. A. Maier, Plasmonics - Fundamentals and Applications (Springer (US), 2010).
  22. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).
  23. J. L. Pan, “Radiative transfer over small distances from a heated metal,” Opt. Lett.25, 369–371 (2000). [CrossRef]
  24. J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng.6, 209–222 (2002). [CrossRef]
  25. J. J. Loomis and H. J. Maris, “Theory of heat transfer by evanescent electromagnetic waves,” Phys. Rev. B50, 18517–18524 (1994). [CrossRef]
  26. I. Celanovic, F. O’Sullivan, M. Ilak, J. Kassakian, and D. Perreault, “Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications,” Opt. Lett.29, 863–865 (2004). [CrossRef] [PubMed]
  27. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature413, 597–602 (2001). [CrossRef] [PubMed]
  28. M. Zenker, A. Heinzel, G. Stollwerck, J. Ferber, and J. Luther, “Efficiency and power density potential of combustion-driven thermophotovoltaic systems using GaSb photovoltaic cells,” IEEE Trans. Electron Devices48, 367–376 (2001). [CrossRef]
  29. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express17, 15145–15159 (2009). [CrossRef] [PubMed]
  30. P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express18, A314–A334 (2010). [CrossRef] [PubMed]
  31. J. B. Pendry, L. Martn-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305, 847–848 (2004). [CrossRef] [PubMed]
  32. W. L. Barnes, A. Dereux, and T. W. Ebessen, “Surface plasmon subwavelength optics,” Nature424, 824–830. [CrossRef] [PubMed]
  33. S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly confined hybrid spoof surface plasmons in ultrathin metal-dielectric heterostructures,” Phys. Rev. Lett.105, 176803 (2010). [CrossRef]
  34. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37, 5271–5283 (1998). [CrossRef]
  35. W. Steinmann, “Experimental verification of radiation of plasma oscillations in thin silver films,” Phys. Rev. Lett.5, 470–472 (1960). [CrossRef]
  36. L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 2 (Pergamon Press, 1980).
  37. I. Hamberg and C. G. Granqvist, “Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows,” J. Appl. Phys.60, R123–R160 (1986). [CrossRef]
  38. S. H. Brewer and S. Franzen, “Calculation of the electronic and optical properties of indium tin oxide by density functional theory,” Chem. Phys.300, 285–293 (2004). [CrossRef]
  39. P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.4, 795–808 (2010). [CrossRef]
  40. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306, 666–669 (2004). [CrossRef] [PubMed]
  41. M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009). [CrossRef]
  42. B. Wunsch, T. Stauber, F. Sols, and F. Guinea, “Dynamical polarization of graphene at finite doping,” New J. Phys.8, 318 (2006). [CrossRef]
  43. E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B75, 205418 (2007). [CrossRef]
  44. A. I. Volokitin and B. N. J. Persson, “Near-field radiative heat transfer between closely spaced graphene and amorphous SiO2,” Phys. Rev. B83, 241407 (2011). [CrossRef]
  45. B. N. J. Persson and H. Ueba, “Heat transfer between graphene and amorphous sio 2,” J. Phys. Condens. Matter22, 462201 (2010). [CrossRef]
  46. L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser.129, 012004 (2008). [CrossRef]
  47. R. G. Yang, A. Narayanaswamy, and G. Chen, “Surface-plasmon coupled nonequilibrium thermoelectric refrigerators and power generators,” J. Comput. Theor. Nanosci.2, 75–87 (2005).
  48. J. E. Sipe, “New green-function formalism for surface optics,” J. Opt. Soc. Am. B4, 481–489 (1987). [CrossRef]
  49. K. Joulain, J. Drevillon, and P. Ben-Abdallah, “Noncontact heat transfer between two metamaterials,” Phys. Rev. B81, 165119 (2010). [CrossRef]
  50. H. A. Haus, “Thermal noise in dissipative media,” J. Appl. Phys.32, 493–500 (1961). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited