OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S4 — Jul. 2, 2012
  • pp: A496–A501

Light trapping limits in plasmonic solar cells: an analytical investigation

Xing Sheng, Juejun Hu, Jurgen Michel, and Lionel C. Kimerling  »View Author Affiliations

Optics Express, Vol. 20, Issue S4, pp. A496-A501 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (883 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analytically investigate the light trapping performance in plasmonic solar cells with Si/metallic structures. We consider absorption enhancements for surface plasmon polaritons (SPPs) at planar Si/metal interfaces and localized surface plasmon resonances (LSPRs) for metallic spheres in a Si matrix. We discover that the enhancement factors at Si/metal interfaces are not bound to the conventional Lambertian limit, and strong absorption can be achieved around plasmonic resonant frequencies. In addition, those enhancements are greatly reduced as the fields decay away from the Si/metal interfaces. Therefore, localized plasmonic resonances can be used as efficient light trapping schemes for ultrathin Si solar cells (< 50 nm), while photonic guided mode enhancement is more appropriate for thicker films.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: January 23, 2012
Revised Manuscript: April 3, 2012
Manuscript Accepted: May 22, 2012
Published: May 25, 2012

Xing Sheng, Juejun Hu, Jurgen Michel, and Lionel C. Kimerling, "Light trapping limits in plasmonic solar cells: an analytical investigation," Opt. Express 20, A496-A501 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Brendel, Thin-Film Crystalline Silicon Solar Cells: Physics and Technology (Wiley-VCH Verlag GmbH & Co. KGaA, 2003).
  2. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  3. H. Keppner, J. Meier, P. Torres, D. Fischer, and A. Shah, “Microcrystalline silicon and micromorph tandem solar cells,” Appl. Phys., A Mater. Sci. Process.69(2), 169–177 (1999), . [CrossRef]
  4. X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwal, J. Michel, and L. C. Kimerling, “Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells,” Adv. Mater. (Deerfield Beach Fla.)23(7), 843–847 (2011). [CrossRef] [PubMed]
  5. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008). [CrossRef]
  6. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett.8(12), 4391–4397 (2008). [CrossRef] [PubMed]
  7. E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys.241(4), 313–324 (1971). [CrossRef]
  8. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009. [CrossRef]
  9. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am.72(7), 899–907 (1982). [CrossRef]
  10. H. R. Stuart and D. G. Hall, “Thermodynamic limit to light trapping in thin planar structures,” J. Opt. Soc. Am. A14(11), 3001–3008 (1997). [CrossRef]
  11. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010). [CrossRef] [PubMed]
  12. E. A. Schiff, “Thermodynamic limit to photonic-plasmonic light-trapping in thin films on metals,” J. Appl. Phys.110(10), 104501 (2011). [CrossRef]
  13. D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett.12(1), 214–218 (2012). [CrossRef] [PubMed]
  14. J. N. Munday, D. M. Callahan, and H. A. Atwater, “Light trapping beyond the 4n2 limit in thin waveguides,” Appl. Phys. Lett.100(12), 121121 (2012). [CrossRef]
  15. E. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  16. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Verlag, 2007).
  17. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  18. L. Hu, X. Chen, and G. Chen, “Surface-plasmon enhanced near-bandgap light absorption in silicon photovoltaics,” J. Comput. Theor. Nanosci.5(11), 2096–2101 (2008). [CrossRef]
  19. J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett.11(6), 2195–2201 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited