OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S4 — Jul. 2, 2012
  • pp: A502–A509

Effective light trapping enhancement by plasmonic Ag nanoparticles on silicon pyramid surface

Han Dai, Meicheng Li, Yingfeng Li, Hang Yu, Fan Bai, and Xiaofeng Ren  »View Author Affiliations

Optics Express, Vol. 20, Issue S4, pp. A502-A509 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1193 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Plasmonic Ag nanoparticles were deposited on the silicon pyramid structures to further reduce surface reflectance. Compared with the bare silicon pyramid surface, a dramatic reflectance reduction around 380 nm was observed and the weighted average surface reflectance from 300 nm to 1100 nm could be reduced about 3.4%. By a series of designed experiments combined with Mie theory calculations, the influences of the size, shape and density distribution of Ag nanoparticles on the surface reflectance reduction were investigated in detail. This study shows a practicable method to improve light trapping for the application to solar cells.

© 2012 OSA

OCIS Codes
(240.0240) Optics at surfaces : Optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(290.4020) Scattering : Mie theory

ToC Category:

Original Manuscript: March 7, 2012
Revised Manuscript: April 5, 2012
Manuscript Accepted: May 23, 2012
Published: June 6, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Han Dai, Meicheng Li, Yingfeng Li, Hang Yu, Fan Bai, and Xiaofeng Ren, "Effective light trapping enhancement by plasmonic Ag nanoparticles on silicon pyramid surface," Opt. Express 20, A502-A509 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Eminian, F. J. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovolt. Res. Appl. 19(3), 260–265 (2011). [CrossRef]
  2. J. K. Mapel, M. Singh, M. A. Baldo, and K. Celebi, “Plasmonic excitation of organic double heterostructure solar cells,” Appl. Phys. Lett. 90(12), 121102 (2007). [CrossRef]
  3. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008). [CrossRef]
  4. S. Mokkapati, F. J. Beck, R. de. Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys. 44(18), 185101 (2011). [CrossRef]
  5. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007). [CrossRef]
  6. M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for Plasmonic Applications,” Chem. Rev. 111(6), 3669–3712 (2011). [CrossRef] [PubMed]
  7. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006). [CrossRef]
  8. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  9. C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008). [CrossRef]
  10. P. A. Ragip, W. Justin, B. Edward, L. John, and B. L. Mark, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21, 1–6 (2009).
  11. N. C. Panoiu and R. M. Osgood., “Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes,” Opt. Lett. 32(19), 2825–2827 (2007). [CrossRef] [PubMed]
  12. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003). [CrossRef]
  13. M. C. Carotta, M. Merli, L. Passari, D. Palmeri, G. Martinelli, and R. Van Steenwinkel, “Effect of Thickness and surface treatment on silicon water reflectance,” Sol. Energy Mater. Sol. Cells 27(3), 265–272 (1992). [CrossRef]
  14. A. W. Smith and A. Rohatgi, “Ray tracing analysis of the inverted pyramid texturing geometry for high efficiency silicon solar cells,” Sol. Energy Mater. Sol. Cells 29(1), 37–49 (1993). [CrossRef]
  15. Z. Xin, W. Lei, and Y. D. Ren, “Investigations of random pyramid texture on the surface of single-crystalline silicon for solar cells,” Proceedings of ISES World Congress 4, 1126–1130 (2007).
  16. T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009). [CrossRef]
  17. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).
  18. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008). [CrossRef]
  19. H. Qian, Z. X. Dan, and W. Shuo, “Research on fabricating functional optical Ag thin films and optical properties,” Acta. Phys. Sin. (Overseas Ed) 58, 2731–2736 (2009).
  20. U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer-Verlag, 1995).
  21. B. Soller, The Interaction Between Metal Nanoparticle Resonances and Optical Frequency Surface Waves (University of Rochester, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited