OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S5 — Sep. 10, 2012
  • pp: A578–A588

Conditions for admittance-matched tunneling through symmetric metal-dielectric stacks

T.W. Allen and R.G. DeCorby  »View Author Affiliations


Optics Express, Vol. 20, Issue S5, pp. A578-A588 (2012)
http://dx.doi.org/10.1364/OE.20.00A578


View Full Text Article

Acrobat PDF (882 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We used the theory of potential transmittance to derive a general expression for reflection-less tunneling through a periodic stack with a dielectric-metal-dielectric unit cell. For normal-incidence from air, the theory shows that only a specific (and typically impractically large) dielectric index can enable a perfect admittance match. For off-normal incidence of TE-polarized light, an admittance match is possible at a specific angle that depends on the index of the ambient and dielectric media and the thickness and index of the metal. For TM-polarized light, admittance matching is possible within the evanescent-wave range (i.e. for tunneling mediated by surface plasmons). The results provide insight for research on transparent metals and superlenses.

© 2012 OSA

OCIS Codes
(230.4170) Optical devices : Multilayers
(310.7005) Thin films : Transparent conductive coatings

ToC Category:
Thin Films

History
Original Manuscript: April 30, 2012
Revised Manuscript: June 14, 2012
Manuscript Accepted: June 27, 2012
Published: July 5, 2012

Citation
T.W. Allen and R.G. DeCorby, "Conditions for admittance-matched tunneling through symmetric metal-dielectric stacks," Opt. Express 20, A578-A588 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-S5-A578


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. C. Fan and F. J. Bachner, “Transparent heat mirrors for solar-energy applications,” Appl. Opt.15(4), 1012–1017 (1976). [CrossRef] [PubMed]
  2. G. Leftheriotis, P. Yianoulis, and D. Patrikios, “Deposition and optical properties of optimized ZnS/Ag/ZnS thin films for energy saving applications,” Thin Solid Films306(1), 92–99 (1997). [CrossRef]
  3. C. G. Granqvist, “Transparent conductors for solar energy and energy efficiency: a broad-brush picture,” Int. J. Nanotechnol.6(9), 785–797 (2009). [CrossRef]
  4. X. Liu, X. Cai, J. Qiao, J. Mao, and N. Jiang, “The design of ZnS/Ag/ZnS transparent conductive multilayer films,” Thin Solid Films441(1-2), 200–206 (2003). [CrossRef]
  5. M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett.72(14), 1676–1678 (1998). [CrossRef]
  6. S. Hayashi, H. Kurokawa, and H. Oga, “Observation of resonant photon tunneling in photonic double barrier structures,” Opt. Rev.6(3), 204–210 (1999). [CrossRef]
  7. I. R. Hooper, T. W. Preist, and J. R. Sambles, “Making tunnel barriers (including metals) transparent,” Phys. Rev. Lett.97(5), 053902 (2006). [CrossRef] [PubMed]
  8. S. Anantha Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt.50, 1419–1430 (2003).
  9. Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett.7(11), 3360–3365 (2007). [CrossRef] [PubMed]
  10. M. Tsang and D. Psaltis, “Theory of resonantly enhanced near-field imaging,” Opt. Express15(19), 11959–11970 (2007). [CrossRef] [PubMed]
  11. M. J. Bloemer, G. D’Aguanno, M. Scalora, N. Mattiucci, and D. de Ceglia, “Energy considerations for a superlens based on metal/dielectric multilayers,” Opt. Express16(23), 19342–19353 (2008). [CrossRef] [PubMed]
  12. E. Fourkal, I. Velchev, and A. Smolyakov, “Energy and information flow in superlensing,” Phys. Rev. A79(3), 033846 (2009). [CrossRef]
  13. S. Feng, J. Elson, and P. L. Overfelt, “Optical properties of multilayer metal-dielectric nanofilms with all-evanescent modes,” Opt. Express13(11), 4113–4124 (2005). [CrossRef] [PubMed]
  14. P. H. Berning and A. F. Turner, “Induced transmission in absorbing films applied to band pass filter design,” J. Opt. Soc. Am.47(3), 230–239 (1957). [CrossRef]
  15. H. A. Macleod, Thin-Film Optical Filters, Third Edition (Institute of Physics Publishing, 2001).
  16. P. W. Baumeister, “Radiant power flow and absorptance in thin films,” Appl. Opt.8(2), 423–436 (1969). [CrossRef] [PubMed]
  17. T. W. Allen and R. G. DeCorby, “Assessing the maximum transmittance of periodic metal-dielectric multi-layers,” J. Opt. Soc. Am. B28(10), 2529–2536 (2011). [CrossRef]
  18. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37(22), 5271–5283 (1998). [CrossRef] [PubMed]
  19. W. Chen, M. D. Thoreson, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer,” Opt. Express18(5), 5124–5134 (2010). [CrossRef] [PubMed]
  20. D. Owens, C. Fuentes-Hernandez, and B. Kippelen, “Optical properties of one-dimensional metal-dielectric photonic band-gap structures with low-index dielectrics,” Thin Solid Films517(8), 2736–2741 (2009). [CrossRef]
  21. R. Dragila, B. Luther-Davies, and S. Vukovic, “High transparency of classically opaque metallic films,” Phys. Rev. Lett.55(10), 1117–1120 (1985). [CrossRef] [PubMed]
  22. S. Tomita, T. Yokoyama, H. Yanagi, B. Wood, J. B. Pendry, M. Fujii, and S. Hayashi, “Resonant photon tunneling via surface plasmon polaritons through one-dimensional metal-dielectric metamaterials,” Opt. Express16(13), 9942–9950 (2008). [CrossRef] [PubMed]
  23. E. Ray and R. Lopez, “Numerical design and scattering losses of a one-dimensional metallo-dielectric multilayer with broadband coupling of propagating waves to plasmon modes in the visible range,” J. Opt. Soc. Am. B28(7), 1778–1781 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited