OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S5 — Sep. 10, 2012
  • pp: A589–A596

Broadband absorption enhancement in a-Si:H thin-film solar cells sandwiched by pyramidal nanostructured arrays

Chuanhao Li, Liangping Xia, Hongtao Gao, Ruiying Shi, Chen Sun, Haofei Shi, and Chunlei Du  »View Author Affiliations

Optics Express, Vol. 20, Issue S5, pp. A589-A596 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1285 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new thin-film solar cell structure with a broadband absorption enhancement is proposed. The active a-Si:H film is sandwiched by two periodic pyramidal structured layers. The upper dielectric pyramidal layer acts as matching impedance by gradual change of the effective refractive index to enhance the absorption of the active layer in the short wavelength range. The lower metallic pyramidal layer traps light by the excitation of Fabry–Perot (FP) resonance, waveguide (WG) resonance and surface plasmon (SP) mode to enhance the absorption in the long wavelength range. With the cooperation of the two functional layers, a broadband absorption enhancement is realized. The structure parameters are designed by the cavity resonance theory, which shows that the results are accordant with the finite-difference time-domain (FDTD) simulation. By optimizing, the absorption of the sandwich structure is enhanced up to 48% under AM1.5G illumination in the 350–900 nm wavelength range compared to that of bare thin-film solar cells.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(230.7370) Optical devices : Waveguides
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: April 13, 2012
Revised Manuscript: May 31, 2012
Manuscript Accepted: June 12, 2012
Published: July 9, 2012

Chuanhao Li, Liangping Xia, Hongtao Gao, Ruiying Shi, Chen Sun, Haofei Shi, and Chunlei Du, "Broadband absorption enhancement in a-Si:H thin-film solar cells sandwiched by pyramidal nanostructured arrays," Opt. Express 20, A589-A596 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009). [CrossRef] [PubMed]
  2. W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett.10(6), 2012–2018 (2010). [CrossRef] [PubMed]
  3. J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett.10, 000-000 (2010). [PubMed]
  4. S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coatings for Si solar cell with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108 (2008). [CrossRef]
  5. B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial pn junction nanorod solar cells,” J. Appl. Phys.97(11), 114302 (2005). [CrossRef]
  6. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature449(7164), 885–889 (2007). [CrossRef] [PubMed]
  7. F. C. Chen, J. L. Wu, C. L. Lee, Y. Hong, C. H. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett.95(1), 013305 (2009). [CrossRef]
  8. M. Schmid, R. Klenk, M. Ch. Lux-Steiner, M. Topic, and J. Krc, “Modeling plasmonic scattering combined with thin-film optics,” Nanotechnology22(2), 025204 (2011). [CrossRef] [PubMed]
  9. W. S. Koh, Y. Akimov, Y. Li, M. S. Soh, W. P. Goh, and H. S. Chu, “Optical Enhancement with Plasmonic Nanoparticles in Organic Bulk-Heterojunction Solar Cells,” Optical Society of America (2010).
  10. L. Xia, H. Gao, H. Shi, X. Dong, and C. Du, “A Wideband Absorption Enhancement for P3HT: PCBM Addressing by Silver Nanosphere Array,” J. Comput. Theor. Nanosci.8(1), 27–30 (2011). [CrossRef]
  11. J. Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express18(10), 10078–10087 (2010). [CrossRef] [PubMed]
  12. L. Qiao, D. Wang, L. Zuo, Y. Ye, J. Qian, H. Chen, and S. He, “Localized surface plasmon resonance enhanced organic solar cell with gold nanospheres,” Appl. Energy88(3), 848–852 (2011). [CrossRef]
  13. N. N. Lal, B. F. Soares, J. K. Sinha, F. Huang, S. Mahajan, P. N. Bartlett, N. C. Greenham, and J. J. Baumberg, “Enhancing solar cells with localized plasmons in nanovoids,” Opt. Express19(12), 11256–11263 (2011). [CrossRef] [PubMed]
  14. C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010). [CrossRef]
  15. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009). [CrossRef]
  16. M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Plasmonic backcontact grating for P3HT: PCBM organic solar cells enabling strong optical absorption increased in all polarizations,” Opt. Express19(15), 14200–14209 (2011). [CrossRef] [PubMed]
  17. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys.106(7), 073109 (2009). [CrossRef]
  18. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett.8(12), 4391–4397 (2008). [CrossRef] [PubMed]
  19. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si: H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett.95(18), 183503 (2009). [CrossRef]
  20. A. Abass, H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys.109(2), 023111 (2011). [CrossRef]
  21. J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010). [CrossRef] [PubMed]
  22. E. D. Palik and G. Ghosh, Handbook of optical constants of solids (Academic Press, 1985).
  23. T. I. Kim, J. H. Kim, S. J. Son, and S. M. Seo, “Gold nanocones fabricated by nanotransfer printing and their application for field emission,” Nanotechnology19(29), 295302 (2008). [CrossRef] [PubMed]
  24. C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching,” Appl. Phys. Lett.93(13), 133109 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited