OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S5 — Sep. 10, 2012
  • pp: A722–A728

Near-infrared luminescence and energy transfer studies of LaOBr:Nd3+/Yb3+

Zhiguo Xia, Yi Luo, Ming Guan, and Libing Liao  »View Author Affiliations

Optics Express, Vol. 20, Issue S5, pp. A722-A728 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (997 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



LaOBr:Nd3+/Yb3+ has been prepared via a high temperature solid-state method, and near-infrared (NIR) quantum cutting (QC) luminescence in this system has been demonstrated. NIR luminescence of LaOBr:Nd3+/Yb3+ has been investigated by excitation, emission spectra and lifetime measurements, respectively. After absorption of a single 363 nm photon, downconversion (DC) occurs from the Nd3+ 4G9/2 level via the cross-relaxation process Nd3+ (4G9/24F3/2), Yb3+ (2F7/22F5/2), followed by a second energy transfer step from Nd3+ (4F3/2 level) to Yb3+ (2F5/2 level), leading to the emission of two IR photons from Yb3+, which is a promising avenue to boost the efficiency of solar cells with a twofold increase in the photon number.

© 2012 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(250.5230) Optoelectronics : Photoluminescence
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:
Fluorescent and Luminescent Materials

Original Manuscript: July 24, 2012
Revised Manuscript: August 17, 2012
Manuscript Accepted: August 21, 2012
Published: August 24, 2012

Zhiguo Xia, Yi Luo, Ming Guan, and Libing Liao, "Near-infrared luminescence and energy transfer studies of LaOBr:Nd3+/Yb3+," Opt. Express 20, A722-A728 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. F. Brown and J. Q. Wu, “Third generation photovoltaics,” Laser Photonics Rev.3(4), 394–405 (2009). [CrossRef]
  2. A. J. Nozik, “Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots,” Annu. Rev. Phys. Chem.52(1), 193–231 (2001). [CrossRef] [PubMed]
  3. M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science321(5886), 226–228 (2008). [CrossRef] [PubMed]
  4. K. M. Deng, T. Gong, L. X. Hu, X. T. Wei, Y. H. Chen, and M. Yin, “Efficient near-infrared quantum cutting in NaYF4: Ho3+, Yb3+ for solar photovoltaics,” Opt. Express19(3), 1749–1754 (2011). [CrossRef] [PubMed]
  5. B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys.11(47), 11081–11095 (2009). [CrossRef] [PubMed]
  6. Y. Teng, J. Zhou, X. Liu, S. Ye, and J. Qiu, “Efficient broadband near-infrared quantum cutting for solar cells,” Opt. Express18(9), 9671–9676 (2010). [CrossRef] [PubMed]
  7. J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. Van Sark, and R. E. I. Schropp, “Towards upconversion for amorphous silicon solar cells,” Sol. Energy Mater. Sol. Cells94(11), 1919–1922 (2010). [CrossRef]
  8. Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci. R55(5), 353–427 (2010). [CrossRef]
  9. B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: down-conversion,” Sol. Energy Mater. Sol. Cells90(9), 1189–1207 (2006). [CrossRef]
  10. J. J. Zhou, Y. Teng, S. Ye, Y. X. Zhuang, and J. R. Qiu, “Enhanced downconversion luminescence by co-doping Ce3+ in Tb3+–Yb3+ doped borate glasses,” Chem. Phys. Lett.486(4–6), 116–118 (2010). [CrossRef]
  11. Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+,Yb3+ (RE = Pr, Tb, and Tm),” Appl. Phys. Lett.91(5), 051903 (2007). [CrossRef]
  12. J. M. Meijer, L. Aarts, B. M. Van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+, Yb3+,” Phys. Rev. B81(3), 035107 (2010). [CrossRef]
  13. X. P. Chen, X. Y. Huang, and Q. Y. Zhang, “Concentration-dependent near-infrared quantum cutting in NaYF4:Pr3+,Yb3+ phosphor,” J. Appl. Phys.106(6), 063518 (2009). [CrossRef]
  14. S. S. Lee, H. I. Park, C. H. Joh, and S. H. Byeon, “Morphology-dependent photoluminescence property of red-emitting LnOCl:Eu (Ln=La and Gd),” J. Solid State Chem.180(12), 3529–3534 (2007). [CrossRef]
  15. H. Zhang, X. Y. Liu, F. Y. Zhao, L. H. Zhang, Y. F. Zhang, and H. Guo, “Efficient visible to near-infrared energy transfer in Ce3+–Yb3+ co-doped Y2SiO5 phosphors,” Opt. Mater.34(7), 1034–1036 (2012). [CrossRef]
  16. X. Liu, Y. Teng, Y. Zhuang, J. Xie, Y. Qiao, G. Dong, D. Chen, and J. Qiu, “Broadband conversion of visible light to near-infrared emission by Ce3+, Yb3+-codoped yttrium aluminum garnet,” Opt. Lett.34(22), 3565–3567 (2009). [CrossRef] [PubMed]
  17. P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005). [CrossRef]
  18. Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, “Cooperative quantum cutting in one-dimensional (YbxGd1-x) Al3(BO3)4:Tb nanorods,” Appl. Phys. Lett.90, 021107 (2007). [CrossRef]
  19. Z. T. Jia, A. Arcangeli, X. T. Tao, J. Zhang, C. M. Dong, M. H. Jiang, L. Bonellin, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys.105, 083113 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited