OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S5 — Sep. 10, 2012
  • pp: A777–A787

The tradeoff between plasmonic enhancement and optical loss in silicon nanowire solar cells integrated in a metal back reflector

Keya Zhou, Zhongyi Guo, Xiaopeng Li, Jin-Young Jung, Sang-Won Jee, Kwang-Tae Park, Han-Don Um, Ning Wang, and Jung-Ho Lee  »View Author Affiliations

Optics Express, Vol. 20, Issue S5, pp. A777-A787 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2052 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We perform a systematic numerical study to characterize the tradeoff between the plasmonic enhancement and optical loss in periodically aligned, silicon nanowire (SiNW) arrays integrated with a silver back reflector (Ag BR). Optimizing the embedded depth of the wire bottoms into a silver reflector achieved a highly efficient SiNW solar cell. Compared to the SiNW solar cell employing a flat back reflector, the embedded depth of ~20 nm resulted in the relative increase of ~5% in ultimate solar cell efficiency.

© 2012 OSA

OCIS Codes
(350.6050) Other areas of optics : Solar energy
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: July 20, 2012
Revised Manuscript: August 30, 2012
Manuscript Accepted: August 30, 2012
Published: September 7, 2012

Keya Zhou, Zhongyi Guo, Xiaopeng Li, Jin-Young Jung, Sang-Won Jee, Kwang-Tae Park, Han-Don Um, Ning Wang, and Jung-Ho Lee, "The tradeoff between plasmonic enhancement and optical loss in silicon nanowire solar cells integrated in a metal back reflector," Opt. Express 20, A777-A787 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics6(3), 130–132 (2012). [CrossRef]
  2. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett.8(12), 4391–4397 (2008). [CrossRef] [PubMed]
  3. C. Lin and M. L. Povinelli, “The effect of plasmonic particles on solar absorption in vertically aligned silicon nanowire arrays,” Appl. Phys. Lett.97(7), 071110 (2010). [CrossRef]
  4. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16(26), 21793–21800 (2008). [CrossRef] [PubMed]
  5. W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband Light Absorption Enhancement in Thin-Film Silicon Solar Cells,” Nano Lett.10(6), 2012–2018 (2010). [CrossRef] [PubMed]
  6. A. Campa, J. Krč, and M. Topič, “Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations,” J. Appl. Phys.105(8), 083107 (2009). [CrossRef]
  7. L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett.93(22), 221105 (2008). [CrossRef]
  8. R. Biswas and D. Zhou, “Simulation and modelling of photonic and plasmonic crystal back reflectors for efficient light trapping,” Phys. Status Solidi., A Appl. Mater. Sci.207(3), 667–670 (2010). [CrossRef]
  9. J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys.95(3), 1427–1429 (2004). [CrossRef]
  10. F. J. Haug, T. Soderstrom, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys.104(6), 064509 (2008). [CrossRef]
  11. U. W. Paetzold, F. Hallermann, B. E. Pieters, U. Rau, R. Carius, and G. von Plessen, “Localized plasmonic losses at metal back contacts of thin-film silicon solar cells,” Proc. SPIE7725, 772517, 772517-9 (2010). [CrossRef]
  12. M. Peters, M. Rüdiger, H. Hauser, M. Hermle, and B. Bläsi, “Diffractive gratings for crystalline silicon solar cells—optimum parameters and loss mechanisms,” Prog. Photovolt. Res. Appl.n/a (2011), doi:. [CrossRef]
  13. B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97(11), 114302 (2005). [CrossRef]
  14. E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc.130(29), 9224–9225 (2008). [CrossRef] [PubMed]
  15. E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett.10(3), 1082–1087 (2010). [CrossRef] [PubMed]
  16. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express17(22), 19371–19381 (2009). [CrossRef] [PubMed]
  17. L. Hu and G. Chen, “Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications,” Nano Lett.7(11), 3249–3252 (2007). [CrossRef] [PubMed]
  18. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010). [PubMed]
  19. K.-T. Park, Z. Guo, H.-D. Um, J.-Y. Jung, J. M. Yang, S. K. Lim, Y. S. Kim, and J.-H. Lee, “Optical properties of Si microwires combined with nanoneedles for flexible thin film photovoltaics,” Opt. Express19(S1Suppl 1), A41–A50 (2011). [CrossRef] [PubMed]
  20. Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell, and C. M. Lieber, “Controlled Growth and Structures of Molecular-Scale Silicon Nanowires,” Nano Lett.4(3), 433–436 (2004). [CrossRef]
  21. Z. Zhang, T. Shimizu, L. Chen, S. Senz, and U. Gösele, “Bottom-Imprint Method for VSS Growth of Epitaxial Silicon Nanowire Arrays with an Aluminium Catalyst,” Adv. Mater. (Deerfield Beach Fla.)21, 4701–4705 (2009).
  22. J. M. Weisse, D. R. Kim, C. H. Lee, and X. Zheng, “Vertical Transfer of Uniform Silicon Nanowire Arrays via Crack Formation,” Nano Lett.11(3), 1300–1305 (2011). [CrossRef] [PubMed]
  23. J. Kupec and B. Witzigmann, “Computational electromagnetics for nanowire solar cells,” J. Comput. Electron.11(2), 153–165 (2012). [CrossRef]
  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).
  25. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).
  26. K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored Vertical Silicon Nanowires,” Nano Lett.11(4), 1851–1856 (2011). [CrossRef] [PubMed]
  27. B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, C. M. de Sterke, and R. C. McPhedran, “Modal analysis of enhanced absorption in silicon nanowire arrays,” Opt. Express19(S5Suppl 5), A1067–A1081 (2011). [CrossRef] [PubMed]
  28. J. Kupec and B. Witzigmann, “Dispersion, wave propagation and efficiency analysis of nanowire solar cells,” Opt. Express17(12), 10399–10410 (2009). [CrossRef] [PubMed]
  29. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007). [CrossRef] [PubMed]
  30. J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. D. Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett.99(13), 131114 (2011). [CrossRef]
  31. C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun.225(4-6), 331–336 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited