OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 20, Iss. S6 — Nov. 5, 2012
  • pp: A898–A907

Plasmonic core-shell metal-organic nanoparticles enhanced dye-sensitized solar cells

Qi Xu, Fang Liu, Weisi Meng, and Yidong Huang  »View Author Affiliations


Optics Express, Vol. 20, Issue S6, pp. A898-A907 (2012)
http://dx.doi.org/10.1364/OE.20.00A898


View Full Text Article

Enhanced HTML    Acrobat PDF (1667 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an investigation on introducing core-shell Au@PVP nanoparticles (NPs) into dye-sensitized solar cells. As a novel core-shell NPs structure, Au@PVP present not only the chemical stability to iodide/triiodide electrolyte, but also the adhesiveness to dye molecules, which could help to localize most of dye molecules around plasmonic NPs, hence increasing the optical absorption consequently the power conversion efficiency (PCE) of the device. We obtain a PCE enhancement of 30% from 3.3% to 4.3% with incorporation of Au@PVP NPs. Moreover, the device performance with different concentration of Au@PVP NPs from 0 to 12.5 wt% has been studied, and we draw the conclusion that the performance of DSCs could be well improved through enhancing the light absorption by local surface plasmon (LSP) effect from Au@PVP NPs with an optimized concentration.

© 2012 OSA

OCIS Codes
(040.0040) Detectors : Detectors
(040.5350) Detectors : Photovoltaic

ToC Category:
Photovoltaics

History
Original Manuscript: August 23, 2012
Revised Manuscript: September 21, 2012
Manuscript Accepted: September 25, 2012
Published: October 9, 2012

Citation
Qi Xu, Fang Liu, Weisi Meng, and Yidong Huang, "Plasmonic core-shell metal-organic nanoparticles enhanced dye-sensitized solar cells," Opt. Express 20, A898-A907 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-S6-A898


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. O'Regan and M. Grätzel, “A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films,” Nature353(6346), 737–740 (1991). [CrossRef]
  2. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of Light to Electricity by cis-X2bis (2,20-bipyridyl-4,40-dicarboxylate) ruthenium(II) Charge-Transfer Sensitizers(X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes,” J. Am. Chem. Soc.115(14), 6382–6390 (1993). [CrossRef]
  3. M. Grätzel, “Photoelectrochemical cells,” Nature414(6861), 338–344 (2001). [CrossRef] [PubMed]
  4. M. Grätzel, “Dye-sensitized solar cells,” J. Photochem. Photobiol. Photochem. Rev.4(2), 145–153 (2003). [CrossRef]
  5. C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin, and M. Grätzel, “Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells,” ACS Nano3(10), 3103–3109 (2009). [CrossRef] [PubMed]
  6. R. Alvarez-Puebla, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Light Concentration at the Nanometer Scale,” J. Phys. Chem. Lett.1(16), 2428–2434 (2010). [CrossRef]
  7. H. Nabika, M. Takase, F. Nagasawa, and K. Murakoshi, “Toward Plasmon-Induced Photoexcitation of Molecules,” J. Phys. Chem. Lett.1(16), 2470–2487 (2010). [CrossRef]
  8. A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-Resolution Mapping of Electron-Beam-Excited Plasmon Modes in Lithographically Defined Gold Nanostructures,” Nano Lett.11(3), 1323–1330 (2011). [CrossRef] [PubMed]
  9. L. Slaughter, W. S. Chang, and S. Link, “Characterizing Plasmons in Nanoparticles and Their Assemblies with Single Particle Spectroscopy,” J. Phys. Chem. Lett.2(16), 2015–2023 (2011). [CrossRef]
  10. M. G. Blaber, A. I. Henry, J. M. Bingham, G. C. Schatz, and R. P. Van Duyne, “LSPR Imaging of Silver Triangular Nanoprisms: Correlating Scattering with Structure Using Electrodynamics for Plasmon Lifetime Analysis,” J. Phys. Chem. C116(1), 393–403 (2012). [CrossRef]
  11. E. Thimsen, F. Le Formal, M. Grätzel, and S. C. Warren, “Influence of plasmonic Au nanoparticles on Tthe photoactivity of Fe2O3 electrodes for water splitting,” Nano Lett.11(1), 35–43 (2011). [CrossRef] [PubMed]
  12. C. Noguez, “Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment,” J. Phys. Chem. C111(10), 3806–3819 (2007). [CrossRef]
  13. M. Ihara, K. Tanaka, K. Sakaki, I. Honma, and K. Yamada, “Enhancement of the Absorption Coefficient of cis-(NCS)2 Bis(2,20-bipyridyl-4,40-dicarboxylate) ruthenium(II) Dye in Dye-Sensitized Solar Cells by a Silver Island Film,” J. Phys. Chem. B101(26), 5153–5157 (1997). [CrossRef]
  14. K. Ishikawa, C. J. Wen, K. Yamada, and T. Okubo, “The Photocurrent of Dye-Sensitized Solar Cells Enhanced by the Surface Plasmon Resonance,” J. Chem. Eng. of Jpn37(5), 645–649 (2004). [CrossRef]
  15. C. Hagglund, M. Zach, and B. Kasemo, “Enhanced Charge Carrier Generation in Dye Sensitized Solar Cells by Nanoparticle Plasmons,” Appl. Phys. Lett.92(1), 013113 (2008). [CrossRef]
  16. S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Toward Plasmonic Solar Cells: Protection of Silver Nanoparticles Via Atomic Layer Deposition of TiO2.,” Langmuir25(5), 2596–2600 (2009). [CrossRef] [PubMed]
  17. S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance Dependence of Plasmon-Enhanced Photocurrent in Dye-Sensitized Solar Cells,” J. Am. Chem. Soc.131(24), 8407–8409 (2009). [CrossRef] [PubMed]
  18. G. Zhao, H. Kozuka, and T. Yoko, “Effects of the Incorporation of Silver and Gold Nanoparticles on the Photoanodic Properties of Rose Bengal Sensitized TiO2 Film Electrodes Prepared by Sol-Gel Method,” Sol. Energy Mater. Sol. Cells46(3), 219–231 (1997). [CrossRef]
  19. C. Wen, K. Ishikawa, M. Kishima, and K. Yamada, “Effects of Silver Particles on the Photovoltaic Properties of Dye-Sensitized TiO2 Thin Films,” Sol. Energy Mater. Sol. Cells61(4), 339–351 (2000). [CrossRef]
  20. M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic Dye-Sensitized Solar Cells Using Core-Shell Metal-Insulator Nanoparticles,” Nano Lett.11(2), 438–445 (2011). [CrossRef] [PubMed]
  21. J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, “Highly Efficient Plasmon-Enhanced Dye-Sensitized Solar Cells Through Metal@Oxide Core@Shell Nanostructure,” ACS Nano5(9), 7108–7116 (2011). [CrossRef] [PubMed]
  22. C. Nahm, H. Choi, J. Kim, D. R. Jung, C. Kim, J. Moon, B. Lee, and B. Park, “The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells,” Appl. Phys. Lett.99(25), 253107 (2011). [CrossRef]
  23. P. V. Kamat, M. A. Fox, and A. J. Fatiadi, “Dye-loaded polymer electrodes. 2. Photoelectrochemical sensitization by croconate violet in polymer films,” J. Am. Chem. Soc.106(5), 1191–1197 (1984). [CrossRef]
  24. P. V. Kamat and M. A. Fox, “Photophysics and photochemistry of xanthene dyes in polymer solutions and films,” J. Phys. Chem.88(11), 2297–2302 (1984). [CrossRef]
  25. H. Chen, M. G. Blaber, S. D. Standridge, E. J. DeMarco, J. T. Hupp, M. A. Ratner, and G. C. Schatz, “Computational Modeling of Plasmon-Enhanced Light Absorption in a Multicomponent Dye Sensitized Solar Cell,” J. Phys. Chem. C116(18), 10215–10221 (2012). [CrossRef]
  26. A. J. Moulé, H. J. Snaith, M. Kaiser, H. Klesper, D. M. Huang, M. Grätzel, and K. Meerholz, “Optical description of solid-state dye-sensitized solar cells. I. Measurement of layer optical properties,” J. Appl. Phys.106(7), 073111 (2009). [CrossRef]
  27. D. M. Huang, H. J. Snaith, M. Grätzel, K. Meerholz, and A. J. Moulé, “Optical description of solid-state dye-sensitized solar cells. II. Device optical modeling with implications for improving efficiency,” J. Appl. Phys.106(7), 073112 (2009). [CrossRef]
  28. A. C. Khazraji, S. Hotchandani, S. Das, and P. V. Kamat, “controlling Dye (Merocyanine-540) Aggregation on Nanostructured TiO2 Films. An Organized Assembly Approach for Enhancing the Efficiency of Photosensitization,” J. Phys. Chem. B103(22), 4693–4700 (1999). [CrossRef]
  29. S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel, and A. J. Frank, “Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells,” J. Phys. Chem. B101(14), 2576–2582 (1997). [CrossRef]
  30. B. V. Enustun and J. Turkevich, “Coagulation of Colloidal Gold,” J. Am. Chem. Soc.85(21), 3317–3328 (1963). [CrossRef]
  31. J. B. Khurgin, G. Sun, and R. A. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett.94(7), 071103 (2009). [CrossRef]
  32. G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett.94(10), 101103 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited