OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 20, Iss. S6 — Nov. 5, 2012
  • pp: A941–A953

A numerical analysis of the effect of partially-coherent light in photovoltaic devices considering coherence length

Wooyoung Lee, Seung-Yeol Lee, Jungho Kim, Sung Chul Kim, and Byoungho Lee  »View Author Affiliations

Optics Express, Vol. 20, Issue S6, pp. A941-A953 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (974 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a method for calculating the optical response to partially-coherent light based on the coherence length. Using a Fourier transform of a randomly-generated partially-coherent wave, we demonstrate that the reflectance, transmittance, and absorption with the incidence of partially-coherent light can be calculated from the Poynting vector of the incident coherent light. We also demonstrate that the statistical field distribution of partially-coherent light can be obtained from the proposed method using a rigorous coupled wave analysis. The optical characteristics of grating structures in photovoltaic devices are analyzed as a function of coherence length. The method is capable of providing a general procedure for analyzing the incoherent optical characteristics of thick layers or nano particles in photovoltaic devices with the incidence of partially-coherent light.

© 2012 OSA

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(040.5350) Detectors : Photovoltaic
(240.6680) Optics at surfaces : Surface plasmons
(310.0310) Thin films : Thin films

ToC Category:

Original Manuscript: August 27, 2012
Revised Manuscript: October 12, 2012
Manuscript Accepted: October 12, 2012
Published: October 17, 2012

Wooyoung Lee, Seung-Yeol Lee, Jungho Kim, Sung Chul Kim, and Byoungho Lee, "A numerical analysis of the effect of partially-coherent light in photovoltaic devices considering coherence length," Opt. Express 20, A941-A953 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovolt. Res. Appl.20(1), 12–20 (2012). [CrossRef]
  2. M. A. Green, “Silicon photovoltaic modules: a brief history of the first 50 years,” Prog. Photovolt. Res. Appl.13(5), 447–455 (2005). [CrossRef]
  3. G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, and C. A. Grimes, “A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications,” Sol. Energy Mater. Sol. Cells90(14), 2011–2075 (2006). [CrossRef]
  4. I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. Res. Appl.16(3), 235–239 (2008). [CrossRef]
  5. T. Ameri, G. Dennler, C. Lungenschmied, and C. J. Brabec, “Organic tandem solar cells: a review,” Energy Environ. Sci.2(4), 347–363 (2009). [CrossRef]
  6. S. Günes, H. Neugebauer, and N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev.107(4), 1324–1338 (2007). [CrossRef] [PubMed]
  7. M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett.12(6), 2894–2900 (2012). [CrossRef] [PubMed]
  8. P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14(2), 024002 (2012). [CrossRef]
  9. S. C. Kim and I. Sohn, “Simulation of energy conversion efficiency of a solar cell with gratings,” J. Opt. Soc. Kor.14(2), 142–145 (2010). [CrossRef]
  10. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  11. C. C. Katsidis and D. I. Siapkas, “General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference,” Appl. Opt.41(19), 3978–3987 (2002). [CrossRef] [PubMed]
  12. E. Centurioni, “Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers,” Appl. Opt.44(35), 7532–7539 (2005). [CrossRef] [PubMed]
  13. M. C. Troparevsky, A. S. Sabau, A. R. Lupini, and Z. Zhang, “Transfer-matrix formalism for the calculation of optical response in multilayer systems: from coherent to incoherent interference,” Opt. Express18(24), 24715–24721 (2010). [CrossRef] [PubMed]
  14. S. Jung, K.-Y. Kim, Y.-I. Lee, J.-H. Youn, H.-T. Moon, J. Jang, and J. Kim, “Optical modeling and analysis of organic solar cells with coherent multilayers and Incoherent glass substrate using generalized transfer matrix method,” Jpn. J. Appl. Phys.50(12), 122301 (2011). [CrossRef]
  15. J. S. C. Prentice, “Coherent, partially coherent and incoherent light absorption in thin-film multilayer structures,” J. Phys. D Appl. Phys.33(24), 3139–3145 (2000). [CrossRef]
  16. J. S. C. Prentice, “Optical generation rate of electron-hole pairs in multilayer thin-film photovoltaic cells,” J. Phys. D Appl. Phys.32(17), 2146–2150 (1999). [CrossRef]
  17. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A12(5), 1068 (1995). [CrossRef]
  18. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A12(5), 1077 (1995). [CrossRef]
  19. H. Kim, I.-M. Lee, and B. Lee, “Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A24(8), 2313–2327 (2007). [CrossRef] [PubMed]
  20. H. Kim, J. Park, and B. Lee, Fourier Modal Method and Its Applications in Computational Nanophotonics (CRC, 2012).
  21. N. A. Stathopoulos, L. C. Palilis, S. R. Yesayan, S. P. Savaidis, M. Vasilopoulou, and P. Argitis, “A transmission line model for the optical simulation of multilayer structures and its application for oblique illumination of an organic solar cell with anisotropic extinction coefficient,” J. Appl. Phys.110(11), 114506 (2011). [CrossRef]
  22. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  23. M. Bass, ed., Handbook of Optics, 2nd ed., vol. 2 (McGraw-Hill, 1994).
  24. M. Bass, ed., Handbook of Optics, 3rd ed., vol. 4 (McGraw-Hill, 2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited