OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 20, Iss. S6 — Nov. 5, 2012
  • pp: A964–A976

Thermal phase change actuator for self-tracking solar concentration

E. J. Tremblay, D. Loterie, and C. Moser  »View Author Affiliations


Optics Express, Vol. 20, Issue S6, pp. A964-A976 (2012)
http://dx.doi.org/10.1364/OE.20.00A964


View Full Text Article

Enhanced HTML    Acrobat PDF (1881 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a proof of principle demonstration of a reversible in-plane actuator activated by focused sunlight, and describe a concept for its use as a self-tracking mechanism in a planar solar concentrator. By actuating at the location of focused sunlight and splitting the solar spectrum for actuation energy, this phase change device aims to provide the adaptive mechanism necessary to efficiently couple concentrated solar light from a lens into a planar lightguide in a manner that is insensitive to incidence angle. As a preliminary demonstration we present a planar actuator array capable of in-plane deflections of >50μm when illuminated with focused light from a solar simulator and demonstrate solar light activated frustrated total internal reflection (FTIR) with the actuator array. We further propose how this solar induced FTIR effect can be modified using a dichroic facet array to self-adaptively couple and concentrate solar light into a planar lightguide.

© 2012 OSA

OCIS Codes
(220.1770) Optical design and fabrication : Concentrators
(230.7400) Optical devices : Waveguides, slab
(350.6050) Other areas of optics : Solar energy

ToC Category:
Solar Concentrators

History
Original Manuscript: August 20, 2012
Revised Manuscript: October 18, 2012
Manuscript Accepted: October 20, 2012
Published: October 24, 2012

Citation
E. J. Tremblay, D. Loterie, and C. Moser, "Thermal phase change actuator for self-tracking solar concentration," Opt. Express 20, A964-A976 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-S6-A964


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Kurtz, “Opportunities and challenges for development of a mature concentrating photovoltaic power industry,” Tech. Rep. NREL/TP-5200–43208, National Renewable Energy Laboratory (2011).
  2. A. Rabl, Active Solar Collectors and Their Applications (Oxford University, 1985).
  3. R. Winston and W. Zhang, “Pushing concentration of stationary solar concentrators to the limit,” Opt. Express18(S1), A64–A72 (2010). [CrossRef]
  4. M. J. Clifford and D. Eastwood, “Design of a novel passive tracker,” Sol. Energy77(3), 269–280 (2004). [CrossRef]
  5. http://www.zomeworks.com/photovoltaic-tracking-racks/ , accessed 6/12/2012.
  6. W. Sweatt, G. Nielson, and M. Okandan, “Concentrating photovoltaic systems using micro-optics,” in Renewable Energy and the Environment, OSA Technical Digest (CD) (Optical Society of America, 2011), paper SRWC6.
  7. J. M. Hallas, K. A. Baker, J. H. Karp, E. J. Tremblay, and J. E. Ford, “Two-axis solar tracking accomplished through small lateral translations,” Appl. Opt.51(25), 6117–6124 (2012). [CrossRef] [PubMed]
  8. F. Duerr, Y. Meuret, and H. Thienpont, “Tracking integration in concentrating photovoltaics using laterally moving optics,” Opt. Express19(S3Suppl 3), A207–A218 (2011). [CrossRef] [PubMed]
  9. K. A. Baker, J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Reactive self-tracking solar concentrators: concept, design, and initial materials characterization,” Appl. Opt.51(8), 1086–1094 (2012). [CrossRef] [PubMed]
  10. J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express18(2), 1122–1133 (2010). [CrossRef] [PubMed]
  11. J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express19(S4Suppl 4), A673–A685 (2011). [CrossRef] [PubMed]
  12. W. G. J. H. M. Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. D. M. Donegá, A. Meijerink, and D. Vanmaekelbergh, “Luminescent solar concentrators - a review of recent results,” Opt. Express16(26), 21773–21792 (2008). [CrossRef] [PubMed]
  13. P. H. Schmaelzle and G. L. Whiting, “Lower critical solution temperature (LCST) polymers as a self adaptive alternative to mechanical tracking for solar energy harvesting devices,” presented at the MRS Fall Meeting, Boston, 29 Nov. – 3 Dec. 2010.
  14. P. Kozodoy, “Light-tracking optical device and application to light concentration,” US patent application no. 13/215,271 (2011).
  15. E. T. Carlen and C. H. Mastrangelo, “Electrothermally activated paraffin microactuators,” J. Microelectromech. Syst.11(3), 165–174 (2002). [CrossRef]
  16. H. J. Sant, T. Ho, and B. K. Gale, “An in situ heater for a phase-change-material-based actuation system,” J. Micromech. Microeng.20(8), 085039 (2010). [CrossRef]
  17. P. Dubois, E. Vela, S. Koster, D. Briand, H. R. Shea, and N.-F. de Rooij, “Paraffin-PDMS composite thermo microactuator with large vertical displacement capability,” in Proc. 10th Int. Conf. New Actuators, Bremen, Germany, 215–218 (2006).
  18. F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sensor. Actuat. A-Phys.151, 95–99 (2009).
  19. http://mathworld.wolfram.com/ConicalFrustum.html , accessed 10/16/2012.
  20. http://solutions.3m.com/wps/portal/3M/en_US/Renewable/Energy/Product/Films/Cool_Mirror/ , accessed 10/16/2012.
  21. T. J. Hebrink, “Durable Polymeric Films for Increasing the Performance of Concentrators,” in Third Generation Photovoltaics, Vasilis Fthenakis ed. (InTech, 2012), pp. 183–200.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (4711 KB)     
» Media 2: AVI (4272 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited