OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 20, Iss. S6 — Nov. 5, 2012
  • pp: A984–A990

Enhancement of laser-induced rear surface spallation by pyramid textured structures on silicon wafer solar cells

Z. R. Du, N. Palina, J. Chen, A.G. Aberle, B. Hoex, and M. H. Hong  »View Author Affiliations

Optics Express, Vol. 20, Issue S6, pp. A984-A990 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3918 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Pulsed laser ablation is increasingly being applied to locally open the rear dielectric layer of advanced silicon wafer solar cell structures, such as aluminum local back surface field solar cells. We report that the laser ablation process on the rear surface of the solar cell at a relatively low laser fluence can cause undesirable spallation at the front surface which is textured with random upright pyramids. This phenomenon is attributed to the enhancement of the surface spallation effect by up to 3 times due to the confinement of the pressure waves at the tips of these random pyramids. Laser ablation at different laser focus positions and laser fluences is carried out to achieve optimized laser processing of the solar cells.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(140.3330) Lasers and laser optics : Laser damage
(140.3390) Lasers and laser optics : Laser materials processing
(160.6000) Materials : Semiconductor materials

ToC Category:

Original Manuscript: May 4, 2012
Revised Manuscript: August 16, 2012
Manuscript Accepted: October 18, 2012
Published: November 1, 2012

Z. R. Du, N. Palina, J. Chen, A.G. Aberle, B. Hoex, and M. H. Hong, "Enhancement of laser-induced rear surface spallation by pyramid textured structures on silicon wafer solar cells," Opt. Express 20, A984-A990 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Knobloch, A. Aberle, and B. Voss, “Cost effective processes for silicon solar cells with high performance,” in Proceedings of 9th EU PVSEC, Freiburg, Germany (1989), pp.777–780.
  2. T. Roder, P. Grabitz, S. Eisele, C. Wagner, J. R. Kohler, and J. H. Werner, “0.4% absolute efficiency gain of industrial solar cells by laser doped selective emitter,” in Proceedings of 34th IEEE Photovoltaic Specialists Conference (PVSC), PA, USA, (2009), pp. 871–873.
  3. T. Fellmeth, M. Menkoe, F. Clement, D. Biro, and R. Preu, “Highly efficient industrially feasible metal wrap through (MWT) silicon solar cells,” Sol. Energy Mater. Sol. Cells94(12), 1996–2001 (2010). [CrossRef]
  4. E. V. Kerschaver and G. Beaucarne, “Back-contact solar cells: a review,” Prog. Photovolt. Res. Appl.14(2), 107–123 (2006). [CrossRef]
  5. P. Engelhart, S. Hermann, T. Neubert, H. Plagwitz, R. Grischke, R. Meyer, U. Klug, A. Schoonderbeek, U. Stute, and R. Brendel, “Laser ablation of SiO2 for locally contacted Si solar cells with ultra-short pulses,” Prog. Photovolt. Res. Appl.15(6), 521–527 (2007). [CrossRef]
  6. S. Baumann, D. Kray, K. Mayer, A. Eyer, and G. P. Willeke, “Comparative study of laser induced damage in silicon wafers,” in Proceedings of 4th IEEE World Conference on the Photovoltaic Energy Conversion, Hawaii, USA, (2006), pp. 1142–1145.
  7. G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev.103(2), 487–518 (2003). [CrossRef] [PubMed]
  8. X. Z. Zeng, X. L. Mao, S. S. Mao, S. B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett.88(6), 061502 (2006). [CrossRef]
  9. Y. F. Lu, M. H. Hong, S. J. Chua, B. S. Teo, and T. S. Low, “Audible acoustic wave emission in excimer laser interaction with materials,” J. Appl. Phys.79(5), 2186–2191 (1996). [CrossRef]
  10. S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, “Laser ablation of solid substrates in water and ambient air,” J. Appl. Phys.89(4), 2400–2403 (2001). [CrossRef]
  11. S. Zhu, Y. F. Lu, and M. H. Hong, “Laser ablation of solid substrates in a water-confined environment,” Appl. Phys. Lett.79(9), 1396–1398 (2001). [CrossRef]
  12. C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single pulse lasers,” J. Appl. Phys.64(3), 1083–1096 (1988). [CrossRef]
  13. N. C. Anderholm, “Laser generated stress waves,” Appl. Phys. Lett.16(3), 113–115 (1970). [CrossRef]
  14. M. Boustie, L. Berthe, T. Resseguier, and M. Arrigoni, “Laser shock waves: fundamentals and applications,” in Proceedings of 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications. Montreal, Canada, (2008), pp. 32–40.
  15. L. V. Zhigilei, Z. B. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion,” J. Phys. Chem. C113(27), 11892–11906 (2009). [CrossRef]
  16. M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl.3(3), 189–192 (1995). [CrossRef]
  17. A. W. Webb, E. F. Skelton, D. J. Nagel, and S. B. Qadri, “Effects of laser-driven shocks on silicon single crystals,” J. Appl. Phys.61(3), 1155–1161 (1987). [CrossRef]
  18. J. Ren, S. S. Orlov, and L. Hesselink, “Rear surface spallation on single-crystal silicon in nanosecond laser micromachining,” J. Appl. Phys.97(10), 104304 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited