OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 1–11

Suppression of backscattered diffraction from sub-wavelength ‘moth-eye’ arrays

Petros I. Stavroulakis, Stuart A. Boden, Thomas Johnson, and Darren M. Bagnall  »View Author Affiliations


Optics Express, Vol. 21, Issue 1, pp. 1-11 (2013)
http://dx.doi.org/10.1364/OE.21.000001


View Full Text Article

Enhanced HTML    Acrobat PDF (2154 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The eyes and wings of some species of moth are covered with arrays of nanoscale features that dramatically reduce reflection of light. There have been multiple examples where this approach has been adapted for use in antireflection and antiglare technologies with the fabrication of artificial moth-eye surfaces. In this work, the suppression of iridescence caused by the diffraction of light from such artificial regular moth-eye arrays at high angles of incidence is achieved with the use of a new tiled domain design, inspired by the arrangement of features on natural moth-eye surfaces. This bio-mimetic pillar architecture contains high optical rotational symmetry and can achieve high levels of diffraction order power reduction. For example, a tiled design fabricated in silicon and consisting of domains with 9 different orientations of the traditional hexagonal array exhibited a ~96% reduction in the intensity of the −1 diffraction order. It is suggested natural moth-eye surfaces have evolved a tiled domain structure as it confers efficient antireflection whilst avoiding problems with high angle diffraction. This combination of antireflection and stealth properties increases chances of survival by reducing the risk of the insect being spotted by a predator. Furthermore, the tiled domain design could lead to more effective artificial moth-eye arrays for antiglare and stealth applications.

© 2013 OSA

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: July 12, 2012
Manuscript Accepted: September 15, 2012
Published: January 2, 2013

Citation
Petros I. Stavroulakis, Stuart A. Boden, Thomas Johnson, and Darren M. Bagnall, "Suppression of backscattered diffraction from sub-wavelength ‘moth-eye’ arrays," Opt. Express 21, 1-11 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-1-1


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. G. Bernard, “Structural and functional adaptation in a visual system,” Endeavour26, 79–84 (1967).
  2. P. R. Stoddart, P. J. Cadusch, T. M. Boyce, R. M. Erasmus, and J. D. Comins, “Optical properties of chitin: surface-enhanced Raman scattering substrates based on antireflection structures on cicada wings,” Nanotechnology17(3), 680–686 (2006). [CrossRef]
  3. A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Antireflective nanoprotuberance array in the transparent wing of a hawkmoth, Cephonodes hylas,” Zoolog. Sci.14(5), 737–741 (1997). [CrossRef]
  4. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Philos. Trans. R. Soc. London, Ser. B273(1587), 661–667 (2006). [CrossRef]
  5. S. J. Wilson and M. C. Hutley, “The optical properties of “moth eye” antireflection surfaces,” J. Mod. Opt.29, 993–1009 (1982).
  6. P. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “moth eye” principle,” Nature244(5414), 281–282 (1973). [CrossRef]
  7. A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells54(1-4), 333–342 (1998). [CrossRef]
  8. Y. Ono, Y. Kimura, Y. Ohta, and N. Nishida, “Antireflection effect in ultrahigh spatial-frequency holographic relief gratings,” Appl. Opt.26(6), 1142–1146 (1987). [CrossRef] [PubMed]
  9. S. J. Wilson and M. C. Hutley, “The optical properties of “moth eye” antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982). [CrossRef]
  10. R. C. Enger and S. K. Case, “Optical elements with ultrahigh spatial-frequency surface corrugations,” Appl. Opt.22(20), 3220–3228 (1983). [CrossRef] [PubMed]
  11. K. M. Baker, “Highly corrected close-packed microlens arrays and moth-eye structuring on curved surfaces,” Appl. Opt.38(2), 352–356 (1999). [CrossRef] [PubMed]
  12. K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, and H. Nakano, “Antireflection microstructures fabricated upon fluorine-doped SiO(2) films,” Opt. Lett.26(21), 1642–1644 (2001). [CrossRef] [PubMed]
  13. H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys.40(Part 2, No. 7B), L747–L749 (2001). [CrossRef]
  14. J. Nishii, K. Kintaka, Y. Kawamoto, A. Mizutani, and H. Kikuta, “Two dimensional antireflection microstructure on silica glass,” J. Ceram. Soc. Jpn.111(1289), 24–27 (2003). [CrossRef]
  15. L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun.226(1-6), 81–88 (2003). [CrossRef]
  16. M. E. Motamedi, W. H. Southwell, and W. J. Gunning, “Antireflection surfaces in silicon using binary optics technology,” Appl. Opt.31(22), 4371–4376 (1992). [CrossRef] [PubMed]
  17. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett.24(20), 1422–1424 (1999). [CrossRef] [PubMed]
  18. P. Lalanne and G. M. Morris, “Antireflection behaviour of silicon subwavelength periodic structures for visible light,” Nanotechnology8(2), 53–56 (1997). [CrossRef]
  19. D. L. Brundrett, T. K. Gaylord, and E. N. Glytsis, “Polarizing mirror/absorber for visible wavelengths based on a silicon subwavelength grating: design and fabrication,” Appl. Opt.37(13), 2534–2541 (1998). [CrossRef] [PubMed]
  20. Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett.78(2), 142–143 (2001). [CrossRef]
  21. K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology11(3), 161–164 (2000). [CrossRef]
  22. S. A. Boden and D. M. Bagnall, “Bio-mimetic subwavelength surfaces for near-zero reflection sunrise to sunset,” in Proceedings of the 4th IEEE World Conference on Photovoltaic Energy Conversion, 1358–1361 (2006)
  23. H. Sai, H. Fujii, Y. Kanamori, K. Arafune, Y. Ohshita, H. Yugami, and M. Yamaguchi, “Numerical analysis and demonstration of submicron antireflective textures for crystalline silicon solar cells,” in Proceedings of the 4th IEEE World Conference on Photovoltaic Energy Conversion, 1, 1191–1194 (2006)
  24. V. Boerner, V. Kübler, B. Bläsi, and A. Gombert, “P-20: Antireflection systems for flat panel displays - an overview,” SID Symposium Digest of Technical Papers 35, 306–309 (2004).
  25. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett.93(13), 133108 (2008). [CrossRef]
  26. X. Chen, Z.-C. Fan, J. Zhang, G.-F. Song, and L.-H. Chen, “Pseudo-rhombus-shaped subwavelength crossed gratings of GaAs for broadband antireflection,” Chin. Phys. Lett.27(12), 124210 (2010). [CrossRef]
  27. S. A. Boden and D. M. Bagnall, “Nanostructured biomimetic moth-eye arrays in silicon by nanoimprint lithography,” Proc. SPIE7401, 74010J, 74010J-12 (2009). [CrossRef]
  28. A. T. D. Bennett and I. C. Cuthill, “Ultraviolet vision in birds: what is its function?” Vision Res.34(11), 1471–1478 (1994). [CrossRef] [PubMed]
  29. A. M. Hynes, H. Ashraf, J. K. Bhardwaj, J. Hopkins, I. Johnston, and J. N. Shepherd, “Recent advances in silicon etching for MEMS using the ASE (TM) process,” Sens. Actuators, A74(1-3), 13–17 (1999). [CrossRef]
  30. M. Senechal, Quasicrystals and Geometry (Cambridge University Press, 1996).
  31. G. J. Parker, M. D. B. Charlton, M. E. Zoorob, J. J. Baumberg, M. C. Netti, and T. Lee, “Highly engineered mesoporous structures for optical processing,” Philos. Trans. R. Soc. London, Ser. A364, 189–199 (2006).
  32. A. Gombert, B. Bläsi, C. Bühler, P. Nitz, J. Mick, W. Hoßfeld, and M. Niggemann, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng.43(11), 2525–2533 (2004). [CrossRef]
  33. P. I. Stavroulakis, N. Christou, and D. Bagnall, “Improved deposition of large scale ordered nanosphere monolayers via liquid surface self-assembly,” Mater. Sci. Eng. B165(3), 186–189 (2009). [CrossRef]
  34. W.-L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3914–3918 (2008). [CrossRef]
  35. C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett.92(6), 061112 (2008). [CrossRef]
  36. M. E. Kiziroglou, X. Li, D. C. Gonzalez, C. H. De Groot, A. A. Zhukov, P. A. J. de Groot, and P. N. Bartlett, “Orientation and symmetry control of inverse sphere magnetic nanoarrays by guided self-assembly,” J. Appl. Phys.100(11), 113720 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited