OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 1057–1065

Fabrication of mesoscale polymeric templates for three-dimensional disordered photonic materials

Jakub Haberko and Frank Scheffold  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 1057-1065 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2540 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the mesoscale fabrication and characterization of polymeric templates for isotropic photonic materials derived from hyper-uniform point patterns using direct laser writing in a polymer photoresist. We study experimentally the microscopic structure by electron microscopy and small angle light scattering. Reducing the refractive index mismatch by liquid infiltration we find good agreement between the scattering data and numerical calculations in the single scattering limit. Our work thus demonstrates the feasibility of fabricating such random designer materials on technologically relevant length scales.

© 2013 OSA

OCIS Codes
(030.6600) Coherence and statistical optics : Statistical optics
(290.4210) Scattering : Multiple scattering
(160.5293) Materials : Photonic bandgap materials
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: November 23, 2012
Revised Manuscript: December 20, 2012
Manuscript Accepted: December 21, 2012
Published: January 9, 2013

Jakub Haberko and Frank Scheffold, "Fabrication of mesoscale polymeric templates for three-dimensional disordered photonic materials," Opt. Express 21, 1057-1065 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).
  2. W. H. Wang, C. Dong, and C. H. Shek, “Bulk metallic glasses,” Mat Sci Eng R44, 45–89 (2004). [CrossRef]
  3. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys Rev Lett58, 2059–2062 (1987). [CrossRef] [PubMed]
  4. S. John, “Localization of photons in certain disordered dielectric superlattices,” Phys Rev Lett58, 2486–2489 (1987). [CrossRef] [PubMed]
  5. C. Lopez, “Materials aspects of photonic crystals,” Adv. Mater.15, 1679–1704 (2003). [CrossRef]
  6. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Materials3, 444–447 (2004). [CrossRef] [PubMed]
  7. M. Florescu, S. Torquato, and P. J. Steinhardt, “Designer disordered materials with large, complete photonic band gaps,” Proc. Natl. Acad. Sci.106, 20658–20663 (2009). [CrossRef] [PubMed]
  8. S. F. Liew, J.-K. Yang, H. Noh, C. F. Schreck, E. R. Dufresne, C. S. OHern, and H. Cao, “Photonic band gaps in three-dimensional network structures with short-range order,” Phys. Rev. A.84, 063818 (2011). [CrossRef]
  9. M. Florescu, S. Torquato, and P. J. Steinhardt, “Complete band gaps in two-dimensional photonic quasicrystals,” Phys. Rev. B80, 155112 (2009). [CrossRef]
  10. W. N. Man, M. Megens, P. J. Steinhardt, and P. M. Chaikin, “Experimental measurement of the photonic properties of icosahedral quasicrystals,” Nature436, 993–996 (2005). [CrossRef] [PubMed]
  11. P. J. Steinhardt and D. P. Divincenzo, Quasicrystals : The State of the Art (World Scientific, 1999).
  12. C. J. Jin, X. D. Meng, B. Y. Cheng, Z. L. Li, and D. Z. Zhang, “Photonic gap in amorphous photonic materials,” Phys. Rev. B.63, 195107 (2001). [CrossRef]
  13. M. Rechtsman, A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, and S. Mordechai, “Amorphous photonic lattices: band gaps, effective mass, and suppressed transport,” Phys. Rev. Lett.106, 193904 (2011) [CrossRef] [PubMed]
  14. L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, P. Schurtenberger, J. J. Saenz, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett.93, 073903 (2004). [CrossRef] [PubMed]
  15. M. Reufer, L. F. Rojas-Ochoa, P. Schurtenberger, J. J. Saenz, and F. Scheffold, “Transport of light in amorphous photonic materials,” Appl. Phys. Lett.91, 171904 (2007). [CrossRef]
  16. J. F. Galisteo-Lopez, M. Ibisate, R. Sapienza, L. S. Froufe-Prez, A. Blanco, and C. Lopez, “Self-assembled photonic structures,” Adv Mater23, 30–69 (2011). [CrossRef]
  17. H. Noh, J.-K. Yang, S. F. Liew, M. J. Rooks, G. S. Solomon, and H. Cao, “Control of lasing in biomimetic structures with short-range order,” Phys Rev Lett106, 183901 (2011). [CrossRef] [PubMed]
  18. C. E. Zachary, Y. Jiao, and S. Torquato, “Hyperuniform long-range correlations are a signature of disordered jammed hard-particle packings,” Phys. Rev. Lett.106, 178001 (2011). [CrossRef] [PubMed]
  19. W. N. Man, M. Florescu, K. Matsuyama, P. Yadak, S. Torquato, P. J. Steinhardt, and P. Chaikin, “Experimental observation of photonic bandgaps in hyperuniform disordered material” in Proceedings of the Conference on Lasers and Electro-Optics (Cleo) and Quantum Electronics and Laser Science Conference (Qels) (2010).
  20. C. Song, P. Wang, and H. A. Makse, “A phase diagram for jammed matter,” Nature453, 629–632 (2008). Data taken from Hernán Makse’s web page, City College of New York (USA), http://lev.ccny.cuny.edu/hmakse/ . [CrossRef]
  21. A. Donev, S. Torquato, and F. H. Stillinger, “Pair correlation function characteristics of nearly jammed disordered and ordered hard-sphere packings,” Phys. Rev. E71, 011105 (2005). [CrossRef]
  22. J.-L. Barrat and J.-P. Hansen, Basic Concepts for Simple and Complex Liquids (Cambridge University Press, 2003). [CrossRef]
  23. F. Ferri, “Use of a charge coupled device camera for low-angle elastic light scattering,” Rev. Sci. Instrum.68, 2265–2274 (1997). [CrossRef]
  24. A. K. Jain, Fundamentals of Digital Image Processing (Prentice Hall, 1989).
  25. B.T. Draine and P.J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A1, 1491–1499 (1994). [CrossRef]
  26. A. Ledermann, L. Cademartiri, M. Hermatschweiler, C. Toninelli, G. A. Ozin, D. S. Wiersma, M. Wegener, and G. von Freymann, “Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths,” Nat. Materials5, 942–945 (2006). [CrossRef]
  27. I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett.35, 1094–1096 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited