OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 1066–1075

All-nanoparticle concave diffraction grating fabricated by self-assembly onto magnetically-recorded templates

L. Ye, B. Terry, O. T. Mefford, C. Rinaldi, and T. M. Crawford  »View Author Affiliations


Optics Express, Vol. 21, Issue 1, pp. 1066-1075 (2013)
http://dx.doi.org/10.1364/OE.21.001066


View Full Text Article

Enhanced HTML    Acrobat PDF (1987 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using the enormous magnetic field gradients present near the surface of magnetic recording media, we assemble diffraction gratings with lines consisting entirely of self-assembled magnetic nanoparticles that are transferred to flexible polymer thin films. These nanomanufactured gratings have line spacings programmed with commercial magnetic recording and are inherently concave with radii of curvature controlled by varying the polymer film thickness. This manufacturing approach offers a low-cost alternative for realizing concave gratings and more complex optical materials assembled with single-nanometer precision.

© 2013 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.2770) Diffraction and gratings : Gratings
(160.4236) Materials : Nanomaterials
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Diffraction and Gratings

History
Original Manuscript: October 10, 2012
Revised Manuscript: November 27, 2012
Manuscript Accepted: November 28, 2012
Published: January 10, 2013

Citation
L. Ye, B. Terry, O. T. Mefford, C. Rinaldi, and T. M. Crawford, "All-nanoparticle concave diffraction grating fabricated by self-assembly onto magnetically-recorded templates," Opt. Express 21, 1066-1075 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-1-1066


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Kneubühl, “Diffraction grating spectroscopy,” Appl. Opt.8, 505–519 (1969). [CrossRef] [PubMed]
  2. T. M. Hard, “Laser wavelength selection and output coupling by a grating,” Appl. Opt.9, 1825–1830 (1970). [CrossRef] [PubMed]
  3. C. X. Yu and D. T. Neilson, “Diffraction-grating-based (de)multiplexer using image plane transformations,” J. Sel. Topics in Quantum Electron.8, 1194 – 1201 (2002). [CrossRef]
  4. J. McMullin, R. DeCorby, and C. Haugen, “Theory and simulation of a concave diffraction grating demultiplexer for coarse WDM systems,” J. Lightwave Technol.20, 758 –765 (2002). [CrossRef]
  5. G. R. Harrison, “The production of diffraction gratings i. development of the ruling art,” J. Opt. Soc. Am.39, 413–426 (1949). [CrossRef]
  6. T. Namioka and M. Koike, “Aspheric wave-front recording optics for holographic gratings,” Appl. Opt.34, 2180–2186 (1995). [CrossRef] [PubMed]
  7. M. Li, J. Wang, L. Zhuang, and S. Y. Chou, “Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography,” Appl. Phys. Lett.76, 673–675 (2000). [CrossRef]
  8. D. Freeman, S. Madden, and B. Luther-Davies, “Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam,” Opt. Express13, 3079–3086 (2005). [CrossRef] [PubMed]
  9. L. Eurenius, C. Hagglund, E. Olsson, B. Kasemo, and D. Chakarov, “Grating formation by metal-nanoparticle-mediated coupling of light into waveguided modes,” Nat. Photonics2, 360–364 (2008). [CrossRef]
  10. W. Hung, W. Cheng, M. Tsai, W. Chung, I. Jiang, and P. Yeh, “Laser pulse induced gold nanoparticle gratings,” Appl. Phys. Lett.93, 061109 (2008). [CrossRef]
  11. H. Kim, H. Reinhardt, P. Hillebrecht, and N. A. Hampp, “Photochemical preparation of sub-wavelength heterogeneous laser-induced periodic surface structures,” Adv. Mater.24, 1994–1998 (2012). [CrossRef] [PubMed]
  12. S. Singamaneni, V. N. Bliznyuk, C. Binek, and E. Y. Tsymbal, “Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications,” J. Mater. Chem.21, 16819–16845 (2011). [CrossRef]
  13. Y. Wada, S. Totoki, M. Watanabe, N. Moriya, Y. Tsunazawa, and H. Shimaoka, “Nanoparticle size analysis with relaxation of induced grating by dielectrophoresis,” Opt. Express14, 5755–5764 (2006). [CrossRef] [PubMed]
  14. I. E. Sendroiu and R. M. Corn, “Nanoparticle diffraction gratings for DNA detection on photopatterned glass substrates,” Biointerphases3, FD23–FD29 (2008). [CrossRef] [PubMed]
  15. J. Henderson, S. Shi, S. Cakmaktepe, and T. M. Crawford, “Pattern transfer nanomanufacturing using magnetic recording for programmed nanoparticle assembly,” Nanotechnology23, 185304 (2012). [CrossRef] [PubMed]
  16. S. X. Wang and A. M. Taratorin, Magnetic Information Storage Technology (Academic Press, 1999), 1st ed.
  17. M. Takayasu, R. Gerber, and F. J. Friedlaender, “Magnetic separation of sub-micron particles,” IEEE Trans. Magn.19, 2112–2114 (1983). [CrossRef]
  18. J. Lim, D. X. Tan, F. Lanni, R. D. Tilton, and S. A. Majetich, “Optical imaging and magnetophoresis of nanorods,” J. Magn. Magn. Mater.321, 1557–1562 (2009). [CrossRef]
  19. J. Lohau, A. Moser, C. T. Rettner, M. E. Best, and B. D. Terris, “Writing and reading perpendicular magnetic recording media patterned by a focused ion beam,” Appl. Phys. Lett.78, 990–992 (2001). [CrossRef]
  20. F. L. Pedrotti, L. S. Pedrotti, and L. M. Pedrotti, Introduction to Optics (Prentice Hall, 2007), 3rd ed.
  21. E. G. Loewen, M. Nevière, and D. Maystre, “On an asymptotic theory of diffraction gratings used in the scalar domain,” J. Opt. Soc. Am.68, 496–502 (1978). [CrossRef]
  22. F. L. O. Wadsworth, “The modern spectroscope.xv. on the use and mounting of the concave grating as an analyzing or direct comparison spectroscope,” Astrophys. J.3, 47 (1896). [CrossRef]
  23. M. Duban, “Improved wadsworth mounting with aspherical holographic grating,” Appl. Opt.19, 2488–2489 (1980). [CrossRef] [PubMed]
  24. T. Namioka, “Theory of the concave grating.” J. Opt. Soc. Am.49, 446–460 (1959). [CrossRef]
  25. T. Namioka, “Theory of the concave grating. iii. seya-namioka monochromator,” J. Opt. Soc. Am.49, 951–959 (1959). [CrossRef]
  26. A. B. Shafer, L. R. Megill, and L. Droppleman, “Optimization of the czerny-turner spectrometer,” J. Opt. Soc. Am.54, 879–886 (1964). [CrossRef]
  27. W. G. Fastie, “A small plane grating monochromator,” J. Opt. Soc. Am.42, 641–647 (1952). [CrossRef]
  28. R. Masters, C. Hsiech, and H. L. Pardue, “Advantages of an off-littrow mounting of an echelle grating,” Appl. Opt.27, 3895–3897 (1988). [CrossRef] [PubMed]
  29. C. Palmer and E. Loewen, Diffraction Grating Handbook (Newport Corporation, 2005), 6th ed.
  30. H.-J. Kunze, Introduction to Plasma Spectroscopy (Springer, 2009), chap. 3. [CrossRef]
  31. Y. Dong, L. Chen, and X. Bao, “Characterization of the brillouin grating spectra in a polarization-maintaining fiber,” Opt. Express18, 18960–18967 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited