OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 1087–1100

Reconfigurable broadband infrared circularly polarizing reflectors based on phase changing birefringent metasurfaces

P. E. Sieber and D. H. Werner  »View Author Affiliations


Optics Express, Vol. 21, Issue 1, pp. 1087-1100 (2013)
http://dx.doi.org/10.1364/OE.21.001087


View Full Text Article

Enhanced HTML    Acrobat PDF (1752 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper discusses a theoretical approach towards synthesizing broadband circularly polarizing reflectors. The broadband polarizing reflectors consist of birefringent metallo-dielectric metasurfaces which are described by the Jones matrices and verified via full-wave simulations. Specifically, full-wave simulations for candidate designs are presented that target operation in the near infrared band. In addition, reconfigurability is introduced and demonstrated for candidate designs at the long wave infrared band through the inclusion of a bistable phase change chalcogenide glass substrate.

© 2013 OSA

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.3918) Materials : Metamaterials
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Metamaterials

History
Original Manuscript: October 16, 2012
Revised Manuscript: December 8, 2012
Manuscript Accepted: December 11, 2012
Published: January 10, 2013

Citation
P. E. Sieber and D. H. Werner, "Reconfigurable broadband infrared circularly polarizing reflectors based on phase changing birefringent metasurfaces," Opt. Express 21, 1087-1100 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-1-1087


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative value of ε and μ,” Sov. Phys. Usp.10(4), 509–514 (1968). [CrossRef]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999). [CrossRef]
  4. E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radiofrequency metamaterial,” Nat. Mater.10(3), 216–222 (2011). [CrossRef] [PubMed]
  5. Z. H. Jiang, M. D. Gregory, and D. H. Werner, “Experimental demonstration of a broadband transformation optics lens for highly directive multibeam emission,” Phys. Rev. B84(16), 165111 (2011). [CrossRef]
  6. Z. H. Jiang, M. D. Gregory, and D. H. Werner, “A broadband monopole antenna enabled by an ultra-thin anisotropic metamaterial coating,” IEEE Antennas Wirel. Propag. Lett.10, 1543–1546 (2011). [CrossRef]
  7. Z. H. Jiang, Q. Wu, and D. H. Werner, “Demonstration of enhanced broadband unidirectional electromagnetic radiation enabled by a subwavelength profile leaky anisotropic zero-index metamaterial coating,” Phys. Rev. B86(12), 125131 (2012). [CrossRef]
  8. Q. Wu, C. P. Scarborough, D. H. Werner, E. Lier, and X. Wang, “Design synthesis of metasurfaces for broadband hybrid-mode horn antennas with enhanced radiation pattern and polarization characteristics,” IEEE Trans. Antenn. Propag.60(8), 3594–3604 (2012). [CrossRef]
  9. C. R. Jones, “A new calculus for the treatment of optical systems. I. Description and discussion of the calculus,” J. Opt. Soc. Am.31(7), 488–493 (1941). [CrossRef]
  10. C. R. Jones, “A new calculus for the treatment of optical systems. VI. Experimental determination of the matrix,” J. Opt. Soc. Am.37(2), 110–112 (1947). [CrossRef]
  11. C. R. Jones, “A new calculus for the treatment of optical systems. VII. Properties of the N-matricies,” J. Opt. Soc. Am.38(8), 671–685 (1948). [CrossRef]
  12. C. R. Jones, “New calculus for the treatment of optical systems. VIII. Electromagnetic theory,” J. Opt. Soc. Am.46(2), 126–131 (1956). [CrossRef]
  13. E. Collett, “Field guide to polarization,” in SPIE Field Guides, J.E. Greivenkamp, ed. (SPIE, 2005), Vol. FG05.
  14. A. A. Maradudin, Structured Surfaces as Optical Metamaterials (Cambridge University Press, 2011).
  15. J. Kong, Electromagnetic Wave Theory (Wiley, 1986).
  16. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, 1994).
  17. E. Plum, Chirality and Metamaterials (Ph.D. Thesis, University of Southampton, 2010).
  18. P. E. Sieber and D. H. Werner, “A reconfigurable near-infrared circularly polarizing reflector based on phase changing anisotropic metamaterials,” Proceedings of the International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting (IEEE, 2012), IF54.2.
  19. F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag.58(5), 1551–1558 (2010). [CrossRef]
  20. N. Behdad, M. Al-Joumayly, and M. Salehi, “A low-profile third-order bandpass frequency selective surface,” IEEE Trans. Antenn. Propag.57(2), 460–466 (2009). [CrossRef]
  21. T. H. Hand, Design and Applications of Frequency Tunable and Reconfigurable Metamaterials. (Ph.D. Thesis, Duke University, 2009).
  22. C. H. Papas, Theory of Electromagnetic Wave Propagation (McGraw-Hill, 1965).
  23. B. Munk, Frequency Selective Surfaces: Theory and Design (Wiley, 2000).
  24. D. S. Lerner, “A wave polarization converter for circular polarization,” IEEE Trans. Antenn. Propag.13(1), 3–7 (1965). [CrossRef]
  25. K. Karkkainen and M. Stuchly, “Frequency selective surface as a polarization transformer,” Proc. Inst. Elect Eng. Microw. Antennas Propag.149(5-6), 248–252 (2002). [CrossRef]
  26. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908, 1–4 (2007).
  27. J. M. Hao, and Lei Zhou, “Electromagnetic wave scatterings by anisotropic metamaterials: Generalized 4x4 transfer-matrix method,” Phys. Rev. B77, 094201, 1–12 (2008).
  28. J. Y. Chin, J. N. Gollub, J. J. Mock, R. P. Liu, C. Harrison, D. R. Smith, and T. J. Cui, “An efficient broadband metamaterial wave retarder,” Opt. Express17(9), 7640–7647 (2009). [CrossRef] [PubMed]
  29. A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express17(1), 136–149 (2009). [CrossRef] [PubMed]
  30. J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A80(2), 023807 (2009). [CrossRef]
  31. M. Liu, Y. Zhang, X. Wang, and C. Jin, “Incident-angle-insensitive and polarization independent polarization rotator,” Opt. Express18(11), 11990–12001 (2010). [CrossRef] [PubMed]
  32. M. Euler, V. Fusco, R. Cahill, and R. Dickie, “325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization converter,” IEEE Trans. Antenn. Propag.58(7), 2457–2459 (2010). [CrossRef]
  33. W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett.36(6), 927–929 (2011). [CrossRef] [PubMed]
  34. E. Doumanis, G. Goussetis, J. L. Gomez-Tornero, R. Cahill, and V. Fusco, “Anisotropic impedance surfaces for linear to circular polarization conversion,” IEEE Trans. Antenn. Propag.60(1), 212–219 (2012). [CrossRef]
  35. A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun.285(16), 3423–3427 (2012). [CrossRef]
  36. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006). [CrossRef] [PubMed]
  37. H.-T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008). [CrossRef]
  38. B. Zhu, Y. Feng, J. Zhao, C. Huang, and T. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett.97(5), 051906 (2010). [CrossRef]
  39. W. Withayachumnankul, C. Fumeaux, and D. Abbott, “Planar array of electric-LC resonators with broadband tunability,” IEEE Antennas Wirel. Propag. Lett.10, 577–580 (2011). [CrossRef]
  40. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett.103(14), 147401 (2009). [CrossRef] [PubMed]
  41. J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett.11(5), 2142–2144 (2011). [CrossRef] [PubMed]
  42. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express17(20), 18330–18339 (2009). [CrossRef] [PubMed]
  43. D. H. Werner, T. S. Mayer, C. Rivero-Baleine, N. Podraza, K. Richardson, J. Turpin, A. Pogrebnyakov, J. D. Musgraves, J. A. Bossard, H. J. Shin, R. Muise, S. Rogers, and J. D. Johnson, “Adaptive phase change metamaterials for infrared aperture control,” Proc. SPIE8165, 1–9 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited