OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 1121–1127

Self-focusing of femtosecond surface plasmon polaritons

Andreas Pusch, Ilya V. Shadrivov, Ortwin Hess, and Yuri S. Kivshar  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 1121-1127 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1350 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the propagation of femtosecond pulses in nonlinear metal-dielectric plasmonic waveguiding structures by employing the finite-difference time-domain numerical method. Self-focusing of plasmon pulses is observed for defocusing Kerr-like nonlinearity of the dielectric medium due to normal dispersion. We compare the nonlinear propagation of plasmon pulses along a single metal-dielectric interface with the propagation within a metal-dielectric-metal slot waveguide and observe that nonlinear effects are more pronounced for the single surface where longer propagation length may compensate for lower field confinement.

© 2013 OSA

OCIS Codes
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Nonlinear Optics

Original Manuscript: September 11, 2012
Revised Manuscript: October 12, 2012
Manuscript Accepted: October 13, 2012
Published: January 10, 2013

Andreas Pusch, Ilya V. Shadrivov, Ortwin Hess, and Yuri S. Kivshar, "Self-focusing of femtosecond surface plasmon polaritons," Opt. Express 21, 1121-1127 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Plasmonic Nanoguides and Circuits, Ed. S.I. Bozhevolnyi (Pan Stanford Publ, Singapore2009).
  2. A.G. Litvak and V.A. Mironov, “Surface waves on the separation boundary between nonlinear media,” Radiophys. Quant. Electron.11, 1096–1101 (1968). [CrossRef]
  3. V.M. Agranovich, V.S. Babichenko, and V.Ya. Chernyak, “Nonlinear surface polaritons,” Sov. Phys. JETP Lett.32, 512–515 (1980) [In Russian: Pisma JETF 32, 532–535 (1980)].
  4. G.I. Stegeman, C.T. Seaton, J. Ariyasu, R.F. Wallis, and A.A. Maradudin, “Nonlinear electromagnetic waves guided by a single interface,” J. Appl. Phys.58, 2453–2459 (1985). [CrossRef]
  5. A.D. Boardman, A.A. Maradudin, G.I. Stegeman, T. Twardowski, and E.M. Wright, “Exact theory of nonlinear p-polarized optical waves,” Phys. Rev. A35, 1159–1164 (1987). [CrossRef] [PubMed]
  6. J. Ariyasu, C.T. Seaton, G.I. Stegeman, A.A. Maradudin, and R.F. Wallis, “Nonlinear surface polaritons guided by metal films,” J. Appl. Phys.58, 2460–2466 (1985). [CrossRef]
  7. A.D. Boardman, G.S. Cooper, A.A. Maradudin, and T.P. Shen, “Surface-polariton solitons,” Phys. Rev. B34, 8273–8278 (1986). [CrossRef]
  8. E. Feigenbaum and M. Orenstein, “Plasmon-soliton,” Opt. Lett.32, 674–676 (2007). [CrossRef] [PubMed]
  9. A.R. Davoyan, I.V. Shadrivov, and Yu.S. Kivshar, “Self-focusing and spatial plasmon-polariton solitons,” Opt. Express17, 21732–21737 (2009). [CrossRef] [PubMed]
  10. A. Marini, D. Skryabin, and B. Malomed, “Stable spatial plasmon solitons in a dielectric-metal-dielectric geometry with gain and loss,” Opt. Express19, 6616–6622 (2011). [CrossRef] [PubMed]
  11. Yu.S. Kivshar and G.P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, San Diego, 2003), 540pp.
  12. S.O. Demokritov, B. Hillebrands, and A.N. Slavin, “Brillouin light scattering studies of confined spin waves: linear and nonlinear confinment,” Phys. Rep.348, 441–489 (2001). [CrossRef]
  13. O. Büttner, M. Bauer, S. O. Demokritov, B. Hillebrands, Yuri S. Kivshar, V. Grimalsky, Yu. Rapoport, and A. N. Slavin, “Linear and nonlinear diffraction of dipolar spin waves in yttrium iron garnet films observed by space-and time-resolved Brillouin light scattering,” Phys. Rev. B61, 11576–11587 (2000). [CrossRef]
  14. P.B. Johnson and R.W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  15. A. Taflove and S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston2005).
  16. I. S. Maksymov, A. A. Sukhorukov, A. V. Lavrinenko, and Yu. S. Kivshar, “Comparative study of FDTD-adopted numerical algorithms for Kerr nonlinearities,” IEEE Antennas Wireless Propag. Lett.10, 143–146 (2011). [CrossRef]
  17. Z.L. Sámson, P. Horak, K.F. MacDonald, and N.I. Zheludev, “Femtosecond surface plasmon pulse propagation,” Opt. Lett.36, 250–252 (2011). [CrossRef] [PubMed]
  18. M. S. Petrovic, M. R. Belic, C. Denz, and Yu. S. Kivshar, “Counterpropagating optical beams and solitons,” Laser Photonics Rev.5, 214–233 (2010). [CrossRef]
  19. A. Pusch, J. M. Hamm, and O. Hess, “Controllable interaction of counterpropagating solitons in three-level media,” Phys. Rev. A82, 023805 (2010). [CrossRef]
  20. A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Yu. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett.105, 116804 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited