OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 1128–1136

Dislocation density dependent electroabsorption in epitaxial lateral overgrown InGaN/GaN quantum structures

Emre Sari, Lee Woon Jang, Jong Hyeob Baek, In Hwan Lee, Xiao Wei Sun, and Hilmi Volkan Demir  »View Author Affiliations


Optics Express, Vol. 21, Issue 1, pp. 1128-1136 (2013)
http://dx.doi.org/10.1364/OE.21.001128


View Full Text Article

Enhanced HTML    Acrobat PDF (1499 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study electroabsorption (EA) behavior of InGaN/GaN quantum structures grown using epitaxial lateral overgrowth (ELOG) in correlation with their dislocation density levels and in comparison to steady state and time-resolved photoluminescence measurements. The results reveal that ELOG structures with decreasing mask stripe widths exhibit stronger EA performance, with a maximum EA enhancement factor of 4.8 compared to the reference without ELOG. The analyses show that the EA performance follows similar trends with decreasing dislocation density as the essential parameters of the photoluminescence spectra (peak position, width and intensity) together with the photoluminescence lifetimes. While keeping the growth window widths constant, compared to photoluminescence behavior, however, EA surprisingly exhibits the largest performance variation, making EA the most sensitive to the mask stripe widths.

© 2013 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(160.6000) Materials : Semiconductor materials
(230.0250) Optical devices : Optoelectronics

ToC Category:
Materials

History
Original Manuscript: September 18, 2012
Revised Manuscript: November 15, 2012
Manuscript Accepted: December 13, 2012
Published: January 10, 2013

Citation
Emre Sari, Lee Woon Jang, Jong Hyeob Baek, In Hwan Lee, Xiao Wei Sun, and Hilmi Volkan Demir, "Dislocation density dependent electroabsorption in epitaxial lateral overgrown InGaN/GaN quantum structures," Opt. Express 21, 1128-1136 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-1-1128


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011). [CrossRef] [PubMed]
  2. S. P. Denbaars, “Gallium-nitride-based materials for blue to ultraviolet optoelectronics devices,” Proc. IEEE85(11), 1740–1749 (1997). [CrossRef]
  3. C.-Y. Cho, J.-B. Lee, S.-J. Lee, S.-H. Han, T.-Y. Park, J. W. Kim, Y. C. Kim, and S.-J. Park, “Improvement of light output power of InGaN/GaN light-emitting diode by lateral epitaxial overgrowth using pyramidal-shaped SiO2.,” Opt. Express18(2), 1462–1468 (2010). [CrossRef] [PubMed]
  4. C. Bayram, J. L. Pau, R. McClintock, and M. Razeghi, “Comprehensive study of blue and green multi-quantum-well light emitting diodes grown on conventional and lateral epitaxial overgrowth GaN,” Appl. Phys. B95(2), 307–314 (2009). [CrossRef]
  5. S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science281(5379), 956–961 (1998). [CrossRef] [PubMed]
  6. P. Gibart, “Metal organic vapour phase epitaxy of GaN and lateral overgrowth,” Rep. Prog. Phys.67(5), 667–715 (2004). [CrossRef]
  7. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett.72(2), 211–213 (1998). [CrossRef]
  8. A. Usui, H. Sunakawa, A. Sakai, and A. A. Yamaguchi, “Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy,” Jpn. J. Appl. Phys.36(Part 2, No. 7B), L899–L902 (1997). [CrossRef]
  9. C. F. Johnston, M. A. Moram, M. J. Kappers, and C. J. Humphreys, “Defect reduction in (11-22) semipolar GaN grown on m-plane sapphire using ScN interlayers,” Appl. Phys. Lett.94(16), 161109 (2009). [CrossRef]
  10. B. M. Imer, F. Wu, S. P. DenBaars, and J. S. Speck, “Improved quality (11-20) a-plane GaN with sidewall lateral epitaxial overgrowth,” Appl. Phys. Lett.88(6), 061908 (2006). [CrossRef]
  11. C. Y. Huang, H. M. Ku, C. Z. Liao, and S. Chao, “MQWs InGaN/GaN LED with embedded micro-mirror array in the epitaxial-lateral-overgrowth gallium nitride for light extraction enhancement,” Opt. Express18(10), 10674–10684 (2010). [CrossRef] [PubMed]
  12. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the bandgap of quantum well Structures,” Phys. Rev. B32(2), 1043–1060 (1985). [CrossRef]
  13. H. V. Demir, V. A. Sabnis, O. Fidaner, J. S. Harris, D. A. B. Miller, and J.-F. Zheng, “Dual-diode quantum-well modulator for C-band wavelength conversion and broadcasting,” Opt. Express12(2), 310–316 (2004). [CrossRef] [PubMed]
  14. H. V. Demir, V. A. Sabnis, O. Fidaner, J.-F. Zheng, J. S. Harris, and D. A. B. Miller, “Multifunctional integrated photonic switches,” IEEE J. Sel. Top. Quantum Electron.11(1), 86–96 (2005). [CrossRef]
  15. E. Sari, S. Nizamoglu, T. Ozel, and H. V. Demir, “Blue quantum electroabsorption modulators based on reversed quantum confined Stark effect with blueshift,” Appl. Phys. Lett.90(1), 011101 (2007). [CrossRef]
  16. I. Friel, C. Thomidis, and T. D. Moustakas, “Ultraviolet electroabsorption modulator based on AlGaN/GaN multiple quantum wells,” J. Appl. Phys.97(12), 123515 (2005). [CrossRef]
  17. A. Bhatnagar, S. Latif, C. Debaes, and D. A. B. Miller, “Pump-probe measurements of CMOS detector rise time in the blue,” J. Lightwave Technol.22(9), 2213–2217 (2004). [CrossRef]
  18. Z. Xu, G. Chen, F. Abou-Galala, and M. Leonardi, “Experimental performance evaluation of non-line-of-sight ultraviolet communication systems,” Proc. SPIE6709, 67090Y (2007). [CrossRef]
  19. I.-L. Lu, Y.-R. Wu, and J. Singh, “A study of the role of dislocation density, indium composition on the radiative efficiency in InGaN/GaN polar and nonpolar light-emitting diodes using drift-diffusion coupled with a Monte Carlo method,” J. Appl. Phys.108(12), 124508 (2010). [CrossRef]
  20. M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Effect of dislocation density on efficiency droop in GaInN/GaN light-emitting diodes,” Appl. Phys. Lett.91(23), 231114 (2007). [CrossRef]
  21. E. Sari, S. Nizamoglu, I.-H. Lee, J.-H. Baek, and H. V. Demir, “Electric field dependent radiative decay kinetics of polar InGaN/GaN quantum heterostructures at low fields,” Appl. Phys. Lett.94(21), 211107 (2009). [CrossRef]
  22. S.-M. Kim, H. S. Oh, J. H. Baek, K.-H. Lee, G. Y. Jung, J.-H. Song, H.-J. Kim, B.-J. Ahn, D. Yanqun, and J.-H. Song, “Effects of patterned sapphire substrates on piezoelectric field in blue-emitting InGaN multiple quantum wells,” IEEE Electron Device Lett.31(8), 842–844 (2010). [CrossRef]
  23. S. J. Tu, J. K. Sheu, M. L. Lee, C. C. Yang, K. H. Chang, Y. H. Yeh, F. W. Huang, and W. C. Lai, “Enhanced output power of GaN-based LEDs with embedded AlGaN pyramidal shells,” Opt. Express19(13), 12719–12726 (2011). [CrossRef] [PubMed]
  24. L. Y. Chen, H. H. Huang, C. H. Chang, Y. Y. Huang, Y. R. Wu, and J. J. Huang, “Investigation of the strain induced optical transition energy shift of the GaN nanorod light emitting diode arrays,” Opt. Express19(S4Suppl 4), A900–A907 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited