OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 1209–1217

Detailed balance analysis of nanophotonic solar cells

Sunil Sandhu, Zongfu Yu, and Shanhui Fan  »View Author Affiliations


Optics Express, Vol. 21, Issue 1, pp. 1209-1217 (2013)
http://dx.doi.org/10.1364/OE.21.001209


View Full Text Article

Enhanced HTML    Acrobat PDF (1421 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a detailed balance based approach for performing current density-voltage characteristic modeling of nanophotonic solar cells. This approach takes into account the intrinsic material non-idealities, and is useful for determining the theoretical limit of solar cell efficiency for a given structure. Our approach only requires the cell’s absorption spectra over all angles, which can be readily calculated using available simulation tools. Using this approach, we elucidate the physics of open-circuit voltage enhancement over bulk cells in nanoscale thin film structures, by showing that the enhancement is related to the absorption suppression in the immediate spectral region above the bandgap. We also show that with proper design, the use of a grating on a nanoscale thin film can increase its short-circuit current, while preserving its voltage-enhancing capabilities.

© 2013 OSA

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(350.6050) Other areas of optics : Solar energy
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Solar Energy

History
Original Manuscript: December 4, 2012
Revised Manuscript: December 23, 2012
Manuscript Accepted: January 1, 2013
Published: January 10, 2013

Citation
Sunil Sandhu, Zongfu Yu, and Shanhui Fan, "Detailed balance analysis of nanophotonic solar cells," Opt. Express 21, 1209-1217 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-1-1209


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Redfield, “Unified model of fundamental limitations on the performance of silicon solar cells,” IEEE Trans. Electron. Dev.27, 766–771 (1980). [CrossRef]
  2. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev.31, 711–716 (1984). [CrossRef]
  3. O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the shockley-queisser limit,” IEEE J. Photovolt.2, 303–311 (2012). [CrossRef]
  4. H. A. Atwater, “Paths to high efficiency low-cost photovoltaics,” in “Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE,” (2011), pp. 000001–000003. [CrossRef]
  5. A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: The case for thin-film solar cells,” Science285, 692–698 (1999). [CrossRef] [PubMed]
  6. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101, 093105 (2007). [CrossRef]
  7. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett.7, 3249–3252 (2007). [CrossRef] [PubMed]
  8. A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A78, 023825 (2008). [CrossRef]
  9. L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett.93, 221105 (2008). [CrossRef]
  10. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express17, 19371–19381 (2009). [CrossRef] [PubMed]
  11. P. N. Saeta, V. E. Ferry, D. Pacifici, J. N. Munday, and H. A. Atwater, “How much can guided modes enhance absorption in thin solar cells?” Opt. Express17, 20975–20990 (2009). [CrossRef] [PubMed]
  12. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater.21, 3504–3509 (2009). [CrossRef]
  13. S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express18, 5691–5706 (2010). [CrossRef] [PubMed]
  14. X. Sheng, S. G. Johnson, J. Michel, and L. C. Kimerling, “Optimization-based design of surface textures for thin-film si solar cells,” Opt. Express19, A841–A850 (2011). [CrossRef] [PubMed]
  15. A. Raman, Z. Yu, and S. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” Opt. Express19, 19015–19026 (2011). [CrossRef] [PubMed]
  16. E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B86, 041404 (2012). [CrossRef]
  17. C. O. McPheeters and E. T. Yu, “Computational analysis of thin film ingaas/gaas quantum well solar cells with back side light trapping structures,” Opt. Express20, A864–A878 (2012). [CrossRef] [PubMed]
  18. M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett.12, 2894–2900 (2012). [CrossRef] [PubMed]
  19. N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of iii–v nanowire arrays on silicon,” J. Appl. Phys.112, 064321 (2012). [CrossRef]
  20. A. Niv, M. Gharghi, C. Gladden, O. D. Miller, and X. Zhang, “Near-field electromagnetic theory for thin solar cells,” Phys. Rev. Lett.109, 138701 (2012). [CrossRef] [PubMed]
  21. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107, 17491–17496 (2010). [CrossRef] [PubMed]
  22. S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics 3, 1st ed. (Springer-Verlag, New York, 1989), chap. 3.
  23. C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: A direct calculation,” Phys. Rev. Lett.93, 213905 (2004). [CrossRef] [PubMed]
  24. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32, 510–519 (1961). [CrossRef]
  25. National Renewable Energy Lab (NREL), http://rredc.nrel.gov/solar/spectra/am1.5/ , Air Mass 1.5 (AM1.5) Global Spectrum (ASTM173-03G) (2008).
  26. L. D. Landau and E. M. Lifshitz, Statistical Physics Part 1, 3rd ed. (Elsevier Butterworth-Heinemann, Waltham, MA, 1980), chap. V, pp. 183–190.
  27. V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun.183, 2233–2244 (2012). [CrossRef]
  28. E. D. Palik, Handbook of Optical Constants of Solids: Volume 1 (Elsevier Academic Press, Waltham, MA, 1985), pp. 429–443.
  29. D. Hill and P. T. Landsberg, “A formalism for the indirect auger effect. i,” Proc. R. Soc. Lond. A Math. Phys. Sci.347, 547–564 (1976). [CrossRef]
  30. W. Shockley and W. T. Read, “Statistics of the recombinations of holes and electrons,” Phys. Rev.87, 835–842 (1952). [CrossRef]
  31. R. N. Hall, “Electron-hole recombination in germanium,” Phys. Rev.87, 387–387 (1952). [CrossRef]
  32. S. M. Sze and M.-K. Lee, Semiconductor Devices: Physics and Technology, 3rd ed. (Wiley, New York, NY, 2012), chap. 2, pp. 60–62.
  33. C.-C. Chang, C.-Y. Chi, M. Yao, N. Huang, C.-C. Chen, J. Theiss, A. W. Bushmaker, S. LaLumondiere, T.-W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in gaas nanowires,” Nano Lett.12, 4484–4489 (2012). [CrossRef] [PubMed]
  34. G. Mariani, A. Scofield, and D. Huffaker, “High-perfomance patterned arrays of core-shell gaas nanopillar solar cells with in-situ ingap passivation layer,” in “Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE,” (2012), pp. 003080–003082. [CrossRef]
  35. N. Tajik, Z. Peng, P. Kuyanov, and R. R. LaPierre, “Sulfur passivation and contact methods for gaas nanowire solar cells,” Nanotechnology22, 225402 (2011). [CrossRef] [PubMed]
  36. U. Strauss, W. W. Ruhle, and K. Kohler, “Auger recombination in intrinsic gaas,” Appl. Phys. Lett.62, 55–57 (1993). [CrossRef]
  37. M. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic auger processes,” IEEE Trans. Electron. Dev.31, 671–678 (1984). [CrossRef]
  38. R. F. Pierret, Semiconductor Fundamentals: Volume 1, 2nd ed. (Prentice Hall, Upper Saddle River, NJ, 1988), chap. 2, pp. 27,31.
  39. B. Kayes, H. Nie, R. Twist, S. Spruytte, F. Reinhardt, I. Kizilyalli, and G. Higashi, “27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination,” in “Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE,” (2011), pp. 000004–000008. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited