OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 122–128

Unique characteristics of a selective-filling photonic crystal fiber Sagnac interferometer and its application as high sensitivity sensor

Tingting Han, Yan-ge Liu, Zhi Wang, Junqi Guo, Zhifang Wu, Shuanxia Wang, Zhili Li, and Wenyuan Zhou  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 122-128 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1268 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a Sagnac interferometer (SI) based on a selective-filling photonic crystal fiber (SF-PCF), which is achieved by infiltrating a liquid with higher refractive index than background silica into two adjacent air holes of the innermost layer. The SF-PCF guides light by both index-guiding and bandgap-guiding. The modal birefringence of the SF-PCF is decidedly dependent on wavelength, and the modal group birefringence has zero value at a certain wavelength. We also theoretically and experimentally investigate in detail the transmission and temperature characteristics of the SI. Results reveal that the temperature sensitivity of the interference spectrum is also acutely dependent on wavelength and temperature, and an ultrahigh even theoretically infinite sensitivity can be achieved at a certain temperature by choosing proper fiber length. An ultrahigh sensitivity with −26.0 nm/°C (63,882 nm/RIU) at 50.0 °C is experimentally achieved.

© 2013 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:

Original Manuscript: October 22, 2012
Revised Manuscript: December 7, 2012
Manuscript Accepted: December 8, 2012
Published: January 2, 2013

Tingting Han, Yan-ge Liu, Zhi Wang, Junqi Guo, Zhifang Wu, Shuanxia Wang, Zhili Li, and Wenyuan Zhou, "Unique characteristics of a selective-filling photonic crystal fiber Sagnac interferometer and its application as high sensitivity sensor," Opt. Express 21, 122-128 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Vali and R. W. Shorthill, “Fiber ring interferometer,” Appl. Opt.15(5), 1099–1100 (1976). [CrossRef] [PubMed]
  2. Y. G. Liu, B. Liu, X. H. Feng, W. Zhang, G. Zhou, S. Z. Yuan, G. Y. Kai, and X. Y. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt.44(12), 2382–2390 (2005). [CrossRef] [PubMed]
  3. C. L. Zhao, X. F. Yang, C. E. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett.16(11), 2535–2537 (2004). [CrossRef]
  4. H. Y. Fu, H. Y. Tam, L. Y. Shao, X. Y. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt.47(15), 2835–2839 (2008). [CrossRef] [PubMed]
  5. C. Kerbage and B. J. Eggleton, “Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber,” Opt. Express10(5), 246–255 (2002). [CrossRef] [PubMed]
  6. W. W. Qian, C. L. Zhao, S. L. He, X. Y. Dong, S. Q. Zhang, Z. X. Zhang, S. Z. Jin, J. T. Guo, and H. F. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett.36(9), 1548–1550 (2011). [CrossRef] [PubMed]
  7. K. Saitoh and M. Koshiba, “Photonic bandgap fibers with high birefringence,” IEEE Photon. Technol. Lett.14(9), 1291–1293 (2002). [CrossRef]
  8. M. S. Alam, K. Saitoh, and M. Koshiba, “High group birefringence in air-core photonic bandgap fibers,” Opt. Lett.30(8), 824–826 (2005). [CrossRef] [PubMed]
  9. X. Yu, M. Yan, L. W. Luo, and P. Shum, “Theoretical investigation of highly birefringent all-solid photonic bandgap fiber with elliptical cladding rods,” IEEE Photon. Technol. Lett.18(11), 1243–1245 (2006). [CrossRef]
  10. P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Design of low-loss and highly birefringent hollow-core photonic crystal fiber,” Opt. Express14(16), 7329–7341 (2006). [CrossRef] [PubMed]
  11. V. Pureur, G. Bouwmans, K. Delplace, Y. Quiquempois, and M. Douay, “Birefringent solid-core photonic bandgap fibers assisted by interstitial air holes,” Appl. Phys. Lett.94(13), 131102 (2009). [CrossRef]
  12. T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron.39(12-13), 1021–1032 (2007). [CrossRef]
  13. X. B. Zheng, Y. G. Liu, Z. Wang, T. T. Han, C. L. Wei, and J. J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett.100(14), 141104 (2012). [CrossRef]
  14. G. Kim, T. Y. Cho, K. Hwang, K. Lee, K. S. Lee, Y. G. Han, and S. B. Lee, “Strain and temperature sensitivities of an elliptical hollow-core photonic bandgap fiber based on Sagnac interferometer,” Opt. Express17(4), 2481–2486 (2009). [CrossRef] [PubMed]
  15. L. M. Xiao, W. Jin, and M. S. Demokan, “Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs,” Opt. Express15(24), 15637–15647 (2007). [CrossRef] [PubMed]
  16. R. Goto, S. D. Jackson, and K. Takenaga, “Single-polarization operation in birefringent all-solid hybrid microstructured fiber with additional stress applying parts,” Opt. Lett.34(20), 3119–3121 (2009). [CrossRef] [PubMed]
  17. A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett.14(11), 1530–1532 (2002). [CrossRef]
  18. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol.27(11), 1617–1630 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited