OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 1226–1233

Microelectromechanically-driven miniature adaptive Alvarez lens

Guangya Zhou, Hongbin Yu, and Fook Siong Chau  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 1226-1233 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1580 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A miniature solid-state varifocal lens based on Alvarez principle with lens elements having free-form surfaces is reported. The Alvarez lens elements are implemented with diamond-turning and replication molding processes. They are integrated with electrostatically-driven MEMS comb-drive actuators fabricated using SOI micromachining. Dynamic tuning of focal length more than 1.5 times (from 3 mm to 4.65 mm) is experimentally demonstrated with only small MEMS-driven lateral movements of 40 μm. Such varifocal lens may be useful in miniature cameras for autofocus and zooming due to its advantages including ease of packaging and fast tuning speed.

© 2013 OSA

OCIS Codes
(220.3630) Optical design and fabrication : Lenses
(230.3990) Optical devices : Micro-optical devices
(230.4000) Optical devices : Microstructure fabrication
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:
Optical Design and Fabrication

Original Manuscript: October 17, 2012
Revised Manuscript: November 24, 2012
Manuscript Accepted: November 25, 2012
Published: January 11, 2013

Guangya Zhou, Hongbin Yu, and Fook Siong Chau, "Microelectromechanically-driven miniature adaptive Alvarez lens," Opt. Express 21, 1226-1233 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett.84(23), 4789–4791 (2004). [CrossRef]
  2. S. Sato, “Applications of liquid crystals to variable-focusing lenses,” Opt. Rev.6(6), 471–485 (1999). [CrossRef]
  3. G. Beadie, M. L. Sandrock, M. J. Wiggins, R. S. Lepkowicz, J. S. Shirk, M. Ponting, Y. Yang, T. Kazmierczak, A. Hiltner, and E. Baer, “Tunable polymer lens,” Opt. Express16(16), 11847–11857 (2008). [CrossRef] [PubMed]
  4. J.-M. Choi, H.-M. Son, and Y.-J. Lee, “Biomimetic variable-focus lens system controlled by winding-type SMA actuator,” Opt. Express17(10), 8152–8164 (2009). [CrossRef] [PubMed]
  5. A. Werber and H. Zappe, “Tunable pneumatic microoptics,” J. Microelectromech. Syst.17(5), 1218–1227 (2008). [CrossRef]
  6. G. Zhou, H. M. Leung, H. Yu, A. S. Kumar, and F. S. Chau, “Liquid tunable diffractive/refractive hybrid lens,” Opt. Lett.34(18), 2793–2795 (2009). [CrossRef] [PubMed]
  7. H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express14(18), 8031–8036 (2006). [CrossRef] [PubMed]
  8. T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett.82(3), 316–318 (2003). [CrossRef]
  9. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett.85(7), 1128–1130 (2004). [CrossRef]
  10. L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature442(7102), 551–554 (2006). [CrossRef] [PubMed]
  11. L. W. Alvarez, “Two-element variable-power spherical lens,” US 3305294, Feb. 1967.
  12. A. W. Lohmann, “A new class of varifocal lenses,” Appl. Opt.9(7), 1669–1671 (1970). [CrossRef] [PubMed]
  13. S. Barbero, “The Alvarez and Lohmann refractive lenses revisited,” Opt. Express17(11), 9376–9390 (2009). [CrossRef] [PubMed]
  14. P. J. Smilie, B. S. Dutterer, J. L. Lineberger, M. A. Davies, and T. J. Suleski, “Design and characterization of an infrared Alvarez lens,” Opt. Eng.51(1), 013006 (2012). [CrossRef]
  15. J. Schwiegerling and C. Paleta-Toxqui, “Minimal movement zoom lens,” Appl. Opt.48(10), 1932–1935 (2009). [CrossRef] [PubMed]
  16. C. Huang, L. Li, and A. Y. Yi, “Design and fabrication of a micro Alvarez lens array with a variable focal length,” Microsyst. Technol.15(4), 559–563 (2009). [CrossRef]
  17. I. M. Barton, S. N. Dixit, L. J. Summers, K. Avicola, and J. Wilhelmsen, “Diffractive Alvarez lens,” Opt. Lett.25(1), 1–3 (2000). [CrossRef] [PubMed]
  18. G. T. A. Kovacs, Micromachined Transducers Sourcebook (McGraw-Hill, New York, 1998).
  19. W. C. Tang, T. C. H. Nguyen, M. W. Judy, and R. T. Howe, “Electrostatic combdrive of lateral polysilicon resonators,” Sens. Actuators A Phys.21(1-3), 328–331 (1990). [CrossRef]
  20. J. N. Mait, “Understanding diffractive optic design in the scalar domain,” J. Opt. Soc. Am. A12(10), 2145–2158 (1995). [CrossRef]
  21. MEMSCAP, Inc., http://www.memscap.com/products/mumps/soimumps .
  22. H. M. Leung, G. Zhou, H. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng.20(2), 025021 (2010). [CrossRef]
  23. C. G. Blough, M. Rossi, S. K. Mack, and R. L. Michaels, “Single-point diamond turning and replication of visible and near-infrared diffractive optical elements,” Appl. Opt.36(20), 4648–4654 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: MOV (239 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited