OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 1234–1239

Dielectric resonator antenna for applications in nanophotonics

Gilliard N. Malheiros-Silveira, Gustavo S. Wiederhecker, and Hugo E. Hernández-Figueroa  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 1234-1239 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1469 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical nanoantennas, especially of the dipole type, have been theoretically and experimentally demonstrated by many research groups. Likewise, the plasmonic waveguides and optical circuits have experienced significant advances. In radio frequencies and microwaves a category of antenna known as dielectric resonator antenna (DRA), whose radiant element is a dielectric resonator (DR), has been designed for several applications, including satellite and radar systems. In this letter, we explore the possibilities and advantages to design nano DRAs (NDRAs), i. e., DRAs for nanophotonics applications. Numerical demonstrations showing the fundamental antenna parameters for a circular cylindrical NDRA type have been carried out for the short (S), conventional (C), and long (L) bands of the optical communication spectrum.

© 2013 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(260.3910) Physical optics : Metal optics
(350.5610) Other areas of optics : Radiation
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: October 18, 2012
Revised Manuscript: December 8, 2012
Manuscript Accepted: December 21, 2012
Published: January 11, 2013

Gilliard N. Malheiros-Silveira, Gustavo S. Wiederhecker, and Hugo E. Hernández-Figueroa, "Dielectric resonator antenna for applications in nanophotonics," Opt. Express 21, 1234-1239 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011). [CrossRef]
  2. P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys.75(2), 024402 (2012). [CrossRef] [PubMed]
  3. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science308(5728), 1607–1609 (2005). [CrossRef] [PubMed]
  4. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas,” Phys. Rev. Lett.94(1), 017402 (2005). [CrossRef] [PubMed]
  5. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett.89(9), 093120 (2006). [CrossRef]
  6. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004). [CrossRef] [PubMed]
  7. S. A. Choulis, M. K. Mathai, and V.-E. Choong, “Influence of metallic nanoparticles on the performance of organic electrophosphorescence devices,” Appl. Phys. Lett.88(21), 213503 (2006). [CrossRef]
  8. H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-Selective Plasmon-Enhanced Silicon Quantum-Dot Luminescence,” Nano Lett.6(11), 2622–2625 (2006). [CrossRef] [PubMed]
  9. J. Wen, S. Romanov, and U. Peschel, “Excitation of plasmonic gap waveguides by nanoantennas,” Opt. Express17(8), 5925–5932 (2009). [CrossRef] [PubMed]
  10. E. C. Kinzel and X. Xu, “High efficiency excitation of plasmonic waveguides with vertically integrated resonant bowtie apertures,” Opt. Express17(10), 8036–8045 (2009). [CrossRef] [PubMed]
  11. J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance Matching and Emission Properties of Nanoantennas in an Optical Nanocircuit,” Nano Lett.9(5), 1897–1902 (2009). [CrossRef] [PubMed]
  12. M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011). [CrossRef]
  13. J. Wen, P. Banzer, A. Kriesch, D. Ploss, B. Schmauss, and U. Peschel, “Experimental cross-polarization detection of coupling far-field light to highly confined plasmonic gap modes via nanoantennas,” Appl. Phys. Lett.98(10), 101109 (2011). [CrossRef]
  14. L. Yousefi and A. C. Foster, “Waveguide-fed optical hybrid plasmonic patch nano-antenna,” Opt. Express20(16), 18326–18335 (2012). [CrossRef] [PubMed]
  15. C. Balanis, Antenna Theory: Analysis and Design, 3rd Edition (Wiley-Interscience, 2005).
  16. A. Hosseini, H. Nejati, and Y. Massoud, “Design of a maximally flat optical low pass filter using plasmonic nanostrip waveguides,” Opt. Express15(23), 15280–15286 (2007). [CrossRef] [PubMed]
  17. A. A. Kishk and Y. M. M. Antar, “Dielectric Resonator Antennas,” in Antenna Engineering Handbook, John L. Volakis, 4th ed. (New York: McGraw-Hill, 2007).
  18. A. Petosa, Dielectric Resonator Antennas Handbook (Artech House, 2007).
  19. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  20. H. Iizuka, N. Engheta, H. Fujikawa, and K. Sato, “Arm-edge conditions in plasmonic folded dipole nanoantennas,” Opt. Express19(13), 12325–12335 (2011). [CrossRef] [PubMed]
  21. R. K. Mongia and P. Bhartia, “Dielectric resonator antennas—a review and general design relations for resonant frequency and bandwidth,” Int. J. Microwave Millimeter-Wave Computer-Aided Engineering4(3), 230–247 (1994). [CrossRef]
  22. A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics2(5), 307–310 (2008). [CrossRef]
  23. Y. Zhao, N. Engheta, and A. Alù, “Effects of shape and loading of optical nanoantennas on their sensitivity and radiation properties,” J. Opt. Soc. Am. B28(5), 1266–1274 (2011). [CrossRef]
  24. H. Zhou, Z. Li, L. Shang, A. Mickelson, and D. S. Filipovic, “On-Chip Wireless Optical Broadcast Interconnection Network,” J. Lightwave Technol.28, 3569–3577 (2010).
  25. H. Zhou, X. Chen, D. S. Espinoza, A. Mickelson, and D. S. Filipovic, “Nanoscale Optical Dielectric Rod Antenna for On-Chip Interconnecting Networks,” IEEE Trans. Microw. Theory Tech.59(10), 2624–2632 (2011). [CrossRef]
  26. K. K. O, K. Kim, B. A. Floyd, J. L. Mehta, H. Yoon, C.-M. Hung, D. Bravo, T. O. Dickson, X. Guo, R. Li, N. Trichy, J. Caserta, and I. Bomstad, “On-chip antennas in silicon ICs and their application,” IEEE Trans. Electron. Dev.52, 1312–1323 (2005).
  27. J. R. Carson, “Reciprocal Theorems in Radio Communication,” Proc. Inst. Radio Eng.17, 952–956 (1929).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited