OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 1281–1286

Gold nanorod-facilitated localized heating of droplets in microfluidic chips

Zhiyong Li, Pan Wang, Limin Tong, and Lei Zhang  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 1281-1286 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2689 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A gold nanorod-facilitated optical heating method for droplets in microfluidic chips is reported. Individual and stream nanoliter level droplets containing gold nanorods are heated by a low power 808-nm-wavelength laser. Owing to the high photothermal conversion efficiency of gold nanorods, a droplet temperature of 95 °C is achieved by employing a 13.6 mW laser with good reproducibility. The heating and cooling times are 200 and 800 ms, respectively, which are attributed to the fast thermal-transfer rates of the droplets. By controlling the irradiation laser power, the temperature cycles for polymerase chain reaction are also demonstrated.

© 2013 OSA

OCIS Codes
(350.5340) Other areas of optics : Photothermal effects
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: October 31, 2012
Revised Manuscript: December 12, 2012
Manuscript Accepted: December 15, 2012
Published: January 11, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Zhiyong Li, Pan Wang, Limin Tong, and Lei Zhang, "Gold nanorod-facilitated localized heating of droplets in microfluidic chips," Opt. Express 21, 1281-1286 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Song, D. L. Chen, and R. F. Ismagilov, “Reactions in droplets in microflulidic channels,” Angew. Chem. Int. Ed.45(44), 7336–7356 (2006). [CrossRef]
  2. A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl.49(34), 5846–5868 (2010). [PubMed]
  3. V. Trivedi, A. Doshi, G. K. Kurup, E. Ereifej, P. J. Vandevord, and A. S. Basu, “A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening,” Lab Chip10(18), 2433–2442 (2010). [CrossRef] [PubMed]
  4. J.-T. Wang, J. Wang, and J.-J. Han, “Fabrication of advanced particles and particle-based materials assisted by droplet-based microfluidics,” Small7(13), 1728–1754 (2011). [CrossRef] [PubMed]
  5. D. T. Chiu, R. M. Lorenz, and G. D. Jeffries, “Droplets for ultrasmall-volume analysis,” Anal. Chem.81(13), 5111–5118 (2009). [CrossRef] [PubMed]
  6. M. U. Kopp, A. J. Mello, and A. Manz, “Chemical amplification: continuous-flow PCR on a chip,” Science280(5366), 1046–1048 (1998). [CrossRef] [PubMed]
  7. A. J. de Mello, M. Habgood, N. L. Lancaster, T. Welton, and R. C. R. Wootton, “Precise temperature control in microfluidic devices using Joule heating of ionic liquids,” Lab Chip4(5), 417–419 (2004). [CrossRef] [PubMed]
  8. R. Fu, B. Xu, and D. Li, “Study of the temperature field in microchannels of a PDMS chip with embedded local heater using temperature-dependent fluorescent dye,” Int. J. Therm. Sci.45(9), 841–847 (2006). [CrossRef]
  9. B. Selva, J. Marchalot, and M. C. Jullien, “An optimized resistor pattern for temperature gradient control in microfluidics,” J. Micromech. Microeng.19(6), 065002 (2009). [CrossRef]
  10. H. Reinhardt, P. S. Dittrich, A. Manz, and J. Franzke, “Micro-hotplate enhanced optical heating by infrared light for single cell treatment,” Lab Chip7(11), 1509–1514 (2007). [CrossRef] [PubMed]
  11. L. H. Thamdrup, N. B. Larsen, and A. Kristensen, “Light-induced local heating for thermophoretic manipulation of DNA in polymer micro- and nanochannels,” Nano Lett.10(3), 826–832 (2010). [CrossRef] [PubMed]
  12. K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip11(7), 1389–1395 (2011). [CrossRef] [PubMed]
  13. C.-H. Chou, C.-D. Chen, and C. R. Wang, “Highly efficient, wavelength-tunable, gold nanoparticle based optothermal nanoconvertors,” J. Phys. Chem. B109(22), 11135–11138 (2005). [CrossRef] [PubMed]
  14. H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett.9(3), 1139–1146 (2009). [CrossRef] [PubMed]
  15. S. Merabia, S. Shenogin, L. Joly, P. Keblinski, and J. L. Barrat, “Heat transfer from nanoparticles: a corresponding state analysis,” Proc. Natl. Acad. Sci. U.S.A.106(36), 15113–15118 (2009). [CrossRef] [PubMed]
  16. G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano4(2), 709–716 (2010). [CrossRef] [PubMed]
  17. H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small6(20), 2272–2280 (2010). [CrossRef] [PubMed]
  18. B. Jang, Y. S. Kim, and Y. Choi, “Effects of gold nanorod concentration on the depth-related temperature increase during hyperthermic ablation,” Small7(2), 265–270 (2011). [CrossRef] [PubMed]
  19. C. Fang, L. Shao, Y. Zhao, J. Wang, and H. Wu, “A gold nanocrystal/poly(dimethylsiloxane) composite for plasmonic heating on microfluidic chips,” Adv. Mater. (Deerfield Beach Fla.)24(1), 94–98 (2012). [CrossRef] [PubMed]
  20. J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. K. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis21(1), 27–40 (2000). [CrossRef] [PubMed]
  21. P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett.12(6), 3145–3150 (2012). [CrossRef] [PubMed]
  22. D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem.73(17), 4117–4123 (2001). [CrossRef] [PubMed]
  23. G. T. Roman, K. McDaniel, and C. T. Culbertson, “High efficiency micellar electrokinetic chromatography of hydrophobic analytes on poly(dimethylsiloxane) microchips,” Analyst (Lond.)131(2), 194–201 (2006). [CrossRef] [PubMed]
  24. P. H. Hoang, H. Park, and D. P. Kim, “Ultrafast and continuous synthesis of unaccommodating inorganic nanomaterials in droplet- and ionic liquid-assisted microfluidic system,” J. Am. Chem. Soc.133(37), 14765–14770 (2011). [CrossRef] [PubMed]
  25. J. H. Park, A. M. Derfus, E. Segal, K. S. Vecchio, S. N. Bhatia, and M. J. Sailor, “Local heating of discrete droplets using magnetic porous silicon-based photonic crystals,” J. Am. Chem. Soc.128(24), 7938–7946 (2006). [CrossRef] [PubMed]
  26. K. J. Shaw, P. T. Docker, J. V. Yelland, C. E. Dyer, J. Greenman, G. M. Greenway, and S. J. Haswell, “Rapid PCR amplification using a microfluidic device with integrated microwave heating and air impingement cooling,” Lab Chip10(13), 1725–1728 (2010). [CrossRef] [PubMed]
  27. J. J. Shah, S. G. Sundaresan, J. Geist, D. R. Reyes, J. C. Booth, M. V. Rao, and M. Gaitan, “Microwave dielectric heating of fluids in an integrated microfluidic device,” J. Micromech. Microeng.17(11), 2224–2230 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited