OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 1335–1343

Modelocking and femtosecond pulse generation in chip-based frequency combs

Kasturi Saha, Yoshitomo Okawachi, Bonggu Shim, Jacob S. Levy, Reza Salem, Adrea R. Johnson, Mark A. Foster, Michael R. E. Lamont, Michal Lipson, and Alexander L. Gaeta  »View Author Affiliations


Optics Express, Vol. 21, Issue 1, pp. 1335-1343 (2013)
http://dx.doi.org/10.1364/OE.21.001335


View Full Text Article

Enhanced HTML    Acrobat PDF (1576 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate simultaneously the temporal and optical and radio-frequency spectral properties of parametric frequency combs generated in silicon-nitride microresonators and observe that the system undergoes a transition to a mode-locked state. We demonstrate the generation of sub-200-fs pulses at a repetition rate of 99 GHz. Our calculations show that pulse generation in this system is consistent with soliton modelocking. Ultimately, such parametric devices offer the potential of producing ultra-short laser pulses from the visible to mid-infrared regime at repetition rates from GHz to THz.

© 2013 OSA

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(320.7120) Ultrafast optics : Ultrafast phenomena

ToC Category:
Ultrafast Optics

History
Original Manuscript: November 16, 2012
Revised Manuscript: December 21, 2012
Manuscript Accepted: December 22, 2012
Published: January 11, 2013

Virtual Issues
February 26, 2013 Spotlight on Optics

Citation
Kasturi Saha, Yoshitomo Okawachi, Bonggu Shim, Jacob S. Levy, Reza Salem, Adrea R. Johnson, Mark A. Foster, Michael R. E. Lamont, Michal Lipson, and Alexander L. Gaeta, "Modelocking and femtosecond pulse generation in chip-based frequency combs," Opt. Express 21, 1335-1343 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-1-1335


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293, 1286–1289 (2001). [CrossRef] [PubMed]
  2. A. Ehlers, I. Riemann, S. Martin, R. Le Harzic, A. Bartels, C. Janke, and K. König, “High (1GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys.102, 014701 (2007). [CrossRef]
  3. J. Ye, J.-L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Bergquist, L. W. Hollberg, L. Robertsson, and L.-S. Ma, “Delivery of high-stability optical and microwave frequency standards over an optical ber network,” J. Opt. Soc. Am. B20, 1459–1467 (2003). [CrossRef]
  4. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Elsevier Inc., 2006).
  5. S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys.75, 325 (2003). [CrossRef]
  6. J. Schröder, S. Coen, F. Vanholsbeeck, and T. Sylvestre, “Passively mode-locked Raman fiber laser with 100 GHz repetition rate,” Opt. Lett.31, 3489–3491 (2006). [CrossRef] [PubMed]
  7. A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively mode-locked fiber lasers using carbon nanotubes,” Opt. Express19, 6155–6163 (2011). [CrossRef] [PubMed]
  8. H. A. Haus, “Mode locking of lasers,” J. Sel. Top. Quantum Electron.6, 1173–1185 (2000). [CrossRef]
  9. S. Xiao, L. Hollberg, and S. A. Diddams, “Generation of a 20 GHz train of subpicosecond pulses with a stabilized optical-frequency-comb generator,” Opt. Lett.34, 85–87 (2009). [CrossRef]
  10. J. Benedict, J. G. Fujimoto, and F. X. Kartner, “Optical flywheels with attosecond jitter,” Nat. Photonics6, 97–100 (2012). [CrossRef]
  11. A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz Self-Referenced Optical Frequency Comb,” Science326, 681 (2009). [CrossRef] [PubMed]
  12. S. Pekarek, T. Südmeyer, S. Lecomte, S. Kundermann, J. M. Dudley, and U. Keller, “Self-referencable frequency comb from a gigahertz diode-pumped solid state laser,” Opt. Express19, 16491–16497 (2011). [CrossRef] [PubMed]
  13. D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. Quantum Electron.42, 838–847 (2006). [CrossRef]
  14. P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett.98, 071103 (2011). [CrossRef]
  15. M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express19, 8108–8116 (2011). [CrossRef] [PubMed]
  16. J. Davila-Rodriguez, I. Ozdur, C. Williams, and P. J. Delfyett, “A semiconductor-based, frequency-stabilized mode-locked laser using a phase modulator and an intracavity etalon,” Opt. Lett.35, 4130–4132 (2010). [CrossRef] [PubMed]
  17. M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, F. Quinlan, and P.J. Delfyett, “A semiconductor-based 10-GHz optical comb source with sub 3-fs shot-noise-limited timing jitter and ∼500-Hz comb linewidth,” IEEE Photon. Technol. Lett.22, 431–433 (2010). [CrossRef]
  18. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science339, 555–559 (2011). [CrossRef]
  19. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photon.4, 37–40 (2010). [CrossRef]
  20. M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express19, 14233–14239 (2011). [CrossRef] [PubMed]
  21. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36, 3398–3400 (2011). [CrossRef] [PubMed]
  22. A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, and A. L. Gaeta, “Chip-based frequency combs with sub-100-GHz repetition rates,” Opt. Lett.37, 875–877 (2012). [CrossRef] [PubMed]
  23. T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr frequency combs in microresonators,” Nature Photon.6, 480–487 (2012). [CrossRef]
  24. A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Normal group-velocity dispersion Kerr frequency comb,” Opt. Lett.37, 43–45 (2012). [CrossRef] [PubMed]
  25. A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011). [CrossRef] [PubMed]
  26. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007). [CrossRef]
  27. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011). [CrossRef]
  28. S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84, 053833 (2011). [CrossRef]
  29. A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr-frequency-comb formation,” Phys. Rev. A86, 013838 (2012). [CrossRef]
  30. T. Herr, V. Brasch, M. L. Gorodetsky, and T. J. Kippenberg, “Soliton mode-locking in optical microresonators,” arXiv:1211.0733.
  31. R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express17, 4324–4329 (2009). [CrossRef] [PubMed]
  32. Y. Okawachi, R. Salem, A. R. Johnson, K. Saha, J. S. Levy, M. Lipson, and A. L. Gaeta, “Asynchronous single-shot characterization of high-repetition-rate ultrafast waveforms using a time-lens-based temporal magnifier,” Opt. Lett.,37, 4892–4894 (2012). [CrossRef]
  33. A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A85, 023830 (2012). [CrossRef]
  34. F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics4, 471–476 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited