OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 172–181

A plasmon ruler based on nanoscale photothermal effect

Weichun Zhang, Qiang Li, and Min Qiu  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 172-181 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1043 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The determination of nanoscale distances or distance changes necessitates a nanoscale ruler. In the present paper, distance dependence of particle temperature in an optically heated gold nanoparticle pair is quantitatively investigated to explore the possibility of creating a plasmon ruler based on this effect. The two origins of the distance-dependence, i.e., electromagnetic coupling and thermal accumulative effect, are studied. For the particle temperature, a scaling behavior is found, and it suggests that the decay of particle temperature with the interparticle gap for different particle sizes follows a common exponential decay equation. This scaling behavior is qualitatively explained with a simple dipolar-coupling model combined with a point heat source interaction model. On the basis of this scaling behavior of absorption power, we further establish a plasmon ruler equation relating the particle temperature and the interparticle distance. Our findings can serve as an excellent guideline for designing and optimizing temperature-based plasmon rulers.

© 2013 OSA

OCIS Codes
(350.5340) Other areas of optics : Photothermal effects
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

Original Manuscript: November 16, 2012
Revised Manuscript: December 14, 2012
Manuscript Accepted: December 14, 2012
Published: January 2, 2013

Weichun Zhang, Qiang Li, and Min Qiu, "A plasmon ruler based on nanoscale photothermal effect," Opt. Express 21, 172-181 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003). [CrossRef]
  2. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003). [CrossRef] [PubMed]
  3. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004). [CrossRef]
  4. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004). [CrossRef]
  5. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003). [CrossRef]
  6. P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett.487(4-6), 153–164 (2010). [CrossRef]
  7. C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol.23(6), 741–745 (2005). [CrossRef] [PubMed]
  8. B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles,” Nano Lett.5(11), 2246–2252 (2005). [CrossRef] [PubMed]
  9. P. K. Jain, W. Huang, and M. A. El-Sayed, “n the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007). [CrossRef]
  10. B. M. Reinhard, S. Sheikholeslami, A. Mastroianni, A. P. Alivisatos, and J. Liphardt, “Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single ecorv restriction enzymes,” Proc. Natl. Acad. Sci. U.S.A.104(8), 2667–2672 (2007). [CrossRef] [PubMed]
  11. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science332(6036), 1407–1410 (2011). [CrossRef] [PubMed]
  12. X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012). [CrossRef] [PubMed]
  13. G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano4(2), 709–716 (2010). [CrossRef] [PubMed]
  14. P. Zijlstra, J. W. M. Chon, and M. Gu, “White light scattering spectroscopy and electron microscopy of laser induced melting in single gold nanorods,” Phys. Chem. Chem. Phys.11(28), 5915–5921 (2009). [CrossRef] [PubMed]
  15. Z. Qin and J. C. Bischof, “Thermophysical and biological responses of gold nanoparticle laser heating,” Chem. Soc. Rev.41(3), 1191–1217 (2012). [CrossRef] [PubMed]
  16. A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett.1(1), 84–90 (2006). [CrossRef]
  17. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett.7(7), 1929–1934 (2007). [CrossRef] [PubMed]
  18. W. Zhao and J. M. Karp, “Tumour targeting: nanoantennas heat up,” Nat. Mater.8(6), 453–454 (2009). [CrossRef] [PubMed]
  19. P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today2(1), 18–29 (2007). [CrossRef]
  20. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science297(5584), 1160–1163 (2002). [CrossRef] [PubMed]
  21. S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus experiment,” Phys. Rev. B73(4), 045424 (2006). [CrossRef]
  22. D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (snapt) of 5-nm gold beads in live cells,” Biophys. J.91(12), 4598–4604 (2006). [CrossRef] [PubMed]
  23. G. Baffou, M. P. Kreuzer, F. Kulzer, and R. Quidant, “Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy,” Opt. Express17(5), 3291–3298 (2009). [CrossRef] [PubMed]
  24. A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett.5(7), 1371–1377 (2005). [CrossRef] [PubMed]
  25. D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol.24(2), 62–67 (2006). [CrossRef] [PubMed]
  26. L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett.7(11), 3523–3527 (2007). [CrossRef] [PubMed]
  27. H. M. Pollock and A. Hammiche, “Micro-thermal analysis: techniques and applications,” J. Phys. D Appl. Phys.34(9), R23–R53 (2001). [CrossRef]
  28. G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater.5(1), 27–32 (2006). [CrossRef] [PubMed]
  29. V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B73(8), 085417 (2006). [CrossRef]
  30. X. Miao, B. K. Wilson, and L. Y. Lin, “Localized surface plasmon assisted microfluidic mixing,” Appl. Phys. Lett.92(12), 124108 (2008). [CrossRef]
  31. A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today2(1), 30–38 (2007). [CrossRef]
  32. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  33. U. Kreibig and M. Vollmer, Optical Properties Of Metal Clusters (Springer, 1995).
  34. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Verlag, 2007), Chap. 5.
  35. Y. Yue and X. Wang, “Nanoscale thermal probing,” Nano Reviews 3: 11586 - DOI: 10.3402/nano.v3i0.11586 (2012) [CrossRef]
  36. E. R. G. Eckert and R. M. Drake, Heat and Mass Transfer (McGraw-Hill, 1959).
  37. F. Cooper, “Heat transfer from a sphere to an infinite medium,” Int. J. Heat Mass Tran.20(9), 991–993 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited