OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 196–203

104 MHz rate single-shot recording with subpicosecond resolution using temporal imaging

Vincent J. Hernandez, Corey V. Bennett, Bryan D. Moran, Alexander D. Drobshoff, Derek Chang, Carsten Langrock, Martin M. Fejer, and Morten Ibsen  »View Author Affiliations


Optics Express, Vol. 21, Issue 1, pp. 196-203 (2013)
http://dx.doi.org/10.1364/OE.21.000196


View Full Text Article

Enhanced HTML    Acrobat PDF (1145 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate temporal imaging for the measurement and characterization of optical arbitrary waveforms and events. The system measures single-shot 200 ps frames at a rate of 104 MHz, where each frame is time magnified by a factor of −42.4x. Impulse response tests show that the system enables 783 fs resolution when placed at the front end of a 20 GHz oscilloscope. Modulated pulse trains characterize the system’s impulse response, jitter, and frame-to-frame variation.

© 2013 OSA

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(320.7100) Ultrafast optics : Ultrafast measurements

ToC Category:
Ultrafast Optics

History
Original Manuscript: October 31, 2012
Revised Manuscript: December 7, 2012
Manuscript Accepted: December 10, 2012
Published: January 3, 2013

Citation
Vincent J. Hernandez, Corey V. Bennett, Bryan D. Moran, Alexander D. Drobshoff, Derek Chang, Carsten Langrock, Martin M. Fejer, and Morten Ibsen, "104 MHz rate single-shot recording with subpicosecond resolution using temporal imaging," Opt. Express 21, 196-203 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-1-196


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility: enabling fusion ignition for the 21st century,” Nucl. Fusion44(12), S228–S238 (2004). [CrossRef]
  2. S. P. Vernon, M. E. Lowry, K. L. Baker, C. V. Bennett, J. R. Celeste, C. Cerjan, S. Haynes, V. J. Hernandez, W. W. Hsing, G. A. Lacaille, R. A. London, B. Moran, A. S. von Wittenau, P. T. Steele, and R. E. Stewart, “X-ray bang-time and fusion reaction history at picosecond resolution using RadOptic detection,” Rev. Sci. Instrum.83(10), 10D307 (2012). [CrossRef] [PubMed]
  3. L. Bonnet, T. Pierzchala, K. Piotrzkowski, and P. Rodeghiero, “GASTOF: ultra-fast TOF forward detector for exclusive processes at the LHC,” Acta Phys. Pol. B38, 477–482 (2007).
  4. S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics4(11), 760–766 (2010). [CrossRef]
  5. N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and detection in InP photonic integrated circuits for Tb/s optical communications,” Opt. Commun.284(15), 3693–3705 (2011). [CrossRef]
  6. P. J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, and S. Bhooplapur, “Advanced ultrafast technologies based on optical frequency combs,” IEEE J. Sel. Top. Quantum Electron.18(1), 258–274 (2012). [CrossRef]
  7. R. Trebino, Frequency-resolved optical gating: the measurement of ultrashort laser pulses (Kluwer Academic, Boston, Mass., 2000).
  8. C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron.35(4), 501–509 (1999). [CrossRef]
  9. P. Tournois, J. L. Vernet, and G. Bienvenu, “Sur l'analogie optique de certains montages électroniques: Formation d'images temporelles de signaux électriques,” C. R. Acad. Sci.267, 375–378 (1968).
  10. W. J. Caputi, “Stretch: a time-transformation technique,” IEEE Trans. Aerosp. Electron. Syst.AES-7(2), 269–278 (1971). [CrossRef]
  11. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron.30(8), 1951–1963 (1994). [CrossRef]
  12. C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging - part I: system configurations,” IEEE J. Quantum Electron.36(4), 430–437 (2000). [CrossRef]
  13. C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging - part II: system performance,” IEEE J. Quantum Electron.36(6), 649–655 (2000). [CrossRef]
  14. C. V. Bennett, “Ultrafast chirped optical waveform recording using referenced heterodyning and a time microscope,” U.S. Patent No. 7,738,111.
  15. C. V. Bennett and B. H. Kolner, “Upconversion time microscope demonstrating 103x magnification of femtosecond waveforms,” Opt. Lett.24(11), 783–785 (1999). [CrossRef] [PubMed]
  16. C. V. Bennett, B. D. Moran, C. Langrock, M. M. Fejer, and M. Ibsen, “Guided-wave temporal imaging based ultrafast recorders,” in Conf. on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conf. and Photonic Applications Systems Tech. (CLEO/QELS and PhAST), (OSA, 2007), paper CFF1.
  17. C. V. Bennett, B. D. Moran, C. Langrock, M. M. Fejer, and M. Ibsen, “640 GHz real-time recording using temporal imaging,” in Conf. on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conf. and Photonic Applications Systems Tech. (CLEO/QELS and PhAST), (OSA, 2008), paper CTuA6.
  18. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett.33(10), 1047–1049 (2008). [CrossRef] [PubMed]
  19. R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express17(6), 4324–4329 (2009). [CrossRef] [PubMed]
  20. D. H. Broaddus, M. A. Foster, O. Kuzucu, A. C. Turner-Foster, K. W. Koch, M. Lipson, and A. L. Gaeta, “Temporal-imaging system with simple external-clock triggering,” Opt. Express18(13), 14262–14269 (2010). [CrossRef] [PubMed]
  21. M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett.64(3), 270–272 (1994). [CrossRef]
  22. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature456(7218), 81–84 (2008). [CrossRef] [PubMed]
  23. J. Azaña, L. R. Chen, M. A. Muriel, and P. W. E. Smith, “Experimental demonstration of real-time Fourier transformation using linearly chirped fibre Bragg gratings,” Electron. Lett.35(25), 2223–2224 (1999). [CrossRef]
  24. Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” J. Lightwave Technol.21(12), 3085–3103 (2003). [CrossRef]
  25. M. H. Asghari, Y. Park, and J. Azaña, “Complex-field measurement of ultrafast dynamic optical waveforms based on real-time spectral interferometry,” Opt. Express18(16), 16526–16538 (2010). [CrossRef] [PubMed]
  26. R. P. Scott, N. K. Fontaine, D. J. Geisler, and S. J. B. Yoo, “Frequency-to-time-assisted interferometry for full-field optical waveform measurements with picosecond resolution and microsecond record lengths,” IEEE Photon. J.4(3), 748–758 (2012). [CrossRef]
  27. M. H. Asghari and B. Jalali, “Stereopsis-inspired time-stretched amplified real-time spectrometer (STARS),” IEEE Photon. J.4(5), 1693–1701 (2012). [CrossRef]
  28. D. H. Broaddus, M. A. Foster, O. Kuzucu, K. W. Koch, and A. L. Gaeta, “Ultrafast, single-shot phase and amplitude measurement via a temporal imaging approach,” in Conf. on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conf. (CLEO/QELS), (OSA, 2010), paper CMK6.
  29. R. P. Scott, N. K. Fontaine, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, “3.5-THz wide, 175 mode optical comb source,” in Optical Fiber Communication and the National Fiber Optic Engineers Conf. (OFC/NFOEC), (OSA, 2007), paper OWJ3.
  30. S. D. Yang, A. M. Weiner, K. R. Parameswaran, and M. M. Fejer, “400-photon-per-pulse ultrashort pulse autocorrelation measurement with aperiodically poled lithium niobate waveguides at 1.55 microm,” Opt. Lett.29(17), 2070–2072 (2004). [CrossRef] [PubMed]
  31. M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett.33(22), 1891–1893 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited