OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 210–219

Frequency dependent detection in a STED microscope using modulated excitation light

Emiliano Ronzitti, Benjamin Harke, and Alberto Diaspro  »View Author Affiliations


Optics Express, Vol. 21, Issue 1, pp. 210-219 (2013)
http://dx.doi.org/10.1364/OE.21.000210


View Full Text Article

Enhanced HTML    Acrobat PDF (2348 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel concept adaptable to any kind of STED microscope in order to expand the limited number of compatible dyes for performing super resolution imaging. The approach is based on an intensity modulated excitation beam in combination with a frequency dependent detection in the form of a standard lock-in amplifier. This enables to unmix fluorescence signal originated by the excitation beam from the fluorescence caused by the STED beam. The benefit of this concept is demonstrated by imaging biological samples as well as fluorescent spheres, whose spectrum does not allow STED imaging in the conventional way. Our concept is suitable with CW or pulsed STED microscope and can thereby be seen as a general improvement adaptable to any existing setup.

© 2013 OSA

OCIS Codes
(180.0180) Microscopy : Microscopy
(180.1790) Microscopy : Confocal microscopy

ToC Category:
Microscopy

History
Original Manuscript: November 12, 2012
Revised Manuscript: December 20, 2012
Manuscript Accepted: December 21, 2012
Published: January 3, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Emiliano Ronzitti, Benjamin Harke, and Alberto Diaspro, "Frequency dependent detection in a STED microscope using modulated excitation light," Opt. Express 21, 210-219 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-1-210


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19(11), 780–782 (1994). [CrossRef] [PubMed]
  2. M. A. Lauterbach, “Finding, defining and breaking the diffraction barrier in microscopy - a historical perspective,” Optical Nanoscopy1(1), 8 (2012). [CrossRef]
  3. E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Archiv Für Mikroskopische Anatomie9(1), 413–418 (1873). [CrossRef]
  4. S. W. Hell, “Toward fluorescence nanoscopy,” Nat. Biotechnol.21(11), 1347–1355 (2003). [CrossRef] [PubMed]
  5. V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett.94(14), 143903 (2005). [CrossRef] [PubMed]
  6. K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature440(7086), 935–939 (2006). [CrossRef] [PubMed]
  7. J. Keller, A. Schönle, and S. W. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express15(6), 3361–3371 (2007). [CrossRef] [PubMed]
  8. S. W. Hell, “Microscopy and its focal switch,” Nat. Methods6(1), 24–32 (2009). [CrossRef] [PubMed]
  9. B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express16(6), 4154–4162 (2008). [CrossRef] [PubMed]
  10. C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature457(7233), 1159–1162 (2009). [CrossRef] [PubMed]
  11. T. J. Gould, J. R. Myers, and J. Bewersdorf, “Total internal reflection STED microscopy,” Opt. Express19(14), 13351–13357 (2011). [CrossRef] [PubMed]
  12. M. Leutenegger, C. Ringemann, T. Lasser, S. W. Hell, and C. Eggeling, “Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS),” Opt. Express20(5), 5243–5263 (2012). [CrossRef] [PubMed]
  13. E. Auksorius, B. R. Boruah, C. Dunsby, P. M. P. Lanigan, G. Kennedy, M. A. A. Neil, and P. M. W. French, “Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging,” Opt. Lett.33(2), 113–115 (2008). [CrossRef] [PubMed]
  14. J. B. Ding, K. T. Takasaki, and B. L. Sabatini, “Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy,” Neuron63(4), 429–437 (2009). [CrossRef] [PubMed]
  15. G. Moneron and S. W. Hell, “Two-photon excitation STED microscopy,” Opt. Express17(17), 14567–14573 (2009). [CrossRef] [PubMed]
  16. P. Bianchini, B. Harke, S. Galiani, G. Vicidomini, and A. Diaspro, “Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A.109(17), 6390–6393 (2012). [CrossRef] [PubMed]
  17. B. Harke, J. Varghese Chacko, C. Canale, H. Haschke, and A. Diaspro, “A novel nanoscopic tool by combining AFM with STED microscopy,” Optical Nanoscopy 1, (2012).
  18. S. Galiani, B. Harke, G. Vicidomini, G. Lignani, F. Benfenati, A. Diaspro, and P. Bianchini, “Strategies to maximize the performance of a STED microscope,” Opt. Express20(7), 7362–7374 (2012). [CrossRef] [PubMed]
  19. C. A. Wurm, D. Neumann, M. A. Lauterbach, B. Harke, A. Egner, S. W. Hell, and S. Jakobs, “Nanoscale distribution of mitochondrial import receptor Tom20 is adjusted to cellular conditions and exhibits an inner-cellular gradient,” Proc. Natl. Acad. Sci. U.S.A.108(33), 13546–13551 (2011). [CrossRef] [PubMed]
  20. B. Harke, “3D STED microscopy with pulsed and continuous wave lasers,” Niedersächsische Staats-und Universitätsbibliothek Göttingen (2008).
  21. D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express16(13), 9614–9621 (2008). [CrossRef] [PubMed]
  22. V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science320(5873), 246–249 (2008). [CrossRef] [PubMed]
  23. N. Chen, C. H. Wong, and C. J. Sheppard, “Focal modulation microscopy,” Opt. Express16(23), 18764–18769 (2008). [CrossRef] [PubMed]
  24. G. Vicidomini, G. Moneron, C. Eggeling, E. Rittweger, and S. W. Hell, “STED with wavelengths closer to the emission maximum,” Opt. Express20(5), 5225–5236 (2012). [CrossRef] [PubMed]
  25. R. Kasper, B. Harke, C. Forthmann, P. Tinnefeld, S. W. Hell, and M. Sauer, “Single-Molecule STED Microscopy with Photostable Organic Fluorophores,” Small 6, 1379–1384 (2010).
  26. T. Staudt, A. Engler, E. Rittweger, B. Harke, J. Engelhardt, and S. W. Hell, “Far-field optical nanoscopy with reduced number of state transition cycles,” Opt. Express19(6), 5644–5657 (2011). [CrossRef] [PubMed]
  27. R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods5(6), 539–544 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited