OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 220–228

Unidirectional reciprocal wavelength filters based on the square-lattice photonic crystal structures with the rectangular defects

Shuai Feng and Yiquan Wang  »View Author Affiliations


Optics Express, Vol. 21, Issue 1, pp. 220-228 (2013)
http://dx.doi.org/10.1364/OE.21.000220


View Full Text Article

Enhanced HTML    Acrobat PDF (1652 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The novel all-optical unidirectional wavelength filters are studied by the finite-difference time-domain method, which are based on the two-dimensional square-lattice photonic crystal with the rectangular defects. Owing to the modes’ match and mismatch between the defect and the adjacent waveguides, the unidirectional propagation of the fundamental-mode light beam resonant at a certain frequency is obtained. Through merely altering the coupling region between the defect and the input waveguide, a unidirectional dual-branch waveguide filter is designed. This kind of devices has both the abilities of wavelength filtering and unidirectional light propagation, and may be potentially applied in the future all-optical complex integrated circuits.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.1150) Optical devices : All-optical devices
(230.5298) Optical devices : Photonic crystals

ToC Category:
Integrated Optics

History
Original Manuscript: October 1, 2012
Revised Manuscript: December 10, 2012
Manuscript Accepted: December 17, 2012
Published: January 3, 2013

Citation
Shuai Feng and Yiquan Wang, "Unidirectional reciprocal wavelength filters based on the square-lattice photonic crystal structures with the rectangular defects," Opt. Express 21, 220-228 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-1-220


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  3. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature407(6804), 608–610 (2000). [CrossRef] [PubMed]
  4. M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett.76(8), 952 (2000). [CrossRef]
  5. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett.87(25), 253902 (2001). [CrossRef] [PubMed]
  6. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature407(6804), 608–610 (2000). [CrossRef] [PubMed]
  7. B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science300(5625), 1537 (2003). [CrossRef] [PubMed]
  8. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Channel Drop Tunneling through Localized States,” Phys. Rev. Lett.80(5), 960–963 (1998). [CrossRef]
  9. H. Takano, B. S. Song, T. Asano, and S. Noda, “Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal,” Appl. Phys. Lett.86(24), 241101 (2005). [CrossRef]
  10. Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-Way Electromagnetic Waveguide Formed at the Interface between a Plasmonic Metal under a Static Magnetic Field and a Photonic Crystal,” Phys. Rev. Lett.100(2), 023902 (2008). [CrossRef] [PubMed]
  11. F. D. M. Haldane and S. Raghu, “Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry,” Phys. Rev. Lett.100(1), 013904 (2008). [CrossRef] [PubMed]
  12. Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature461(7265), 772–775 (2009). [CrossRef] [PubMed]
  13. K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett.79(3), 314 (2001). [CrossRef]
  14. A. Rostami, “Piecewise linear integrated optical device as an optical isolator using two-port nonlinear ring resonators,” Opt. Laser Technol.39(5), 1059–1065 (2007). [CrossRef]
  15. M. Soljacić, C. Luo, J. D. Joannopoulos, and S. Fan, “Nonlinear photonic crystal microdevices for optical integration,” Opt. Lett.28(8), 637–639 (2003). [CrossRef] [PubMed]
  16. X. S. Lin, W. Q. Wu, H. Zhou, K. F. Zhou, and S. Lan, “Enhancement of unidirectional transmission through the coupling of nonlinear photonic crystal defects,” Opt. Express14(6), 2429–2439 (2006). [CrossRef] [PubMed]
  17. X. F. Li, X. Ni, L. Feng, M. H. Lu, C. He, and Y. F. Chen, “Tunable Unidirectional Sound Propagation through a Sonic-Crystal-Based Acoustic Diode,” Phys. Rev. Lett.106(8), 084301 (2011). [CrossRef] [PubMed]
  18. M. S. Kang, A. Butsch, and P. S. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics5(9), 549–553 (2011). [CrossRef]
  19. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3(2), 91–94 (2009). [CrossRef]
  20. L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal Light Propagation in a Silicon Photonic Circuit,” Science333(6043), 729–733 (2011). [CrossRef] [PubMed]
  21. C. Wang, C. Z. Zhou, and Z. Y. Li, “On-chip optical diode based on silicon photonic crystal heterojunctions,” Opt. Express19(27), 26948–26955 (2011). [CrossRef] [PubMed]
  22. A. Cicek, M. B. Yucel, O. A. Kaya, and B. Ulug, “Refraction-based photonic crystal diode,” Opt. Lett.37(14), 2937–2939 (2012). [CrossRef] [PubMed]
  23. S. Feng, C. Ren, Y. Q. Wang, and W. Z. Wang, “All-optical diode based on the self-collimation characteristics of the near-infrared photonic crystal heterojunctions,” Europhys. Lett.97(6), 64001 (2012). [CrossRef]
  24. C. C. Lu, X. Y. Hu, H. Yang, and Q. H. Gong, “Ultrahigh-contrast and wideband nanoscale photonic crystal all-optical diode,” Opt. Lett.36(23), 4668–4670 (2011). [CrossRef] [PubMed]
  25. L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. H. Qi, “An All-Silicon Passive Optical Diode,” Science335(6067), 447–450 (2012). [CrossRef] [PubMed]
  26. S. Fan, R. Baets, A. Petrov, Z. F. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on “Nonreciprocal Light Propagation in a Silicon Photonic Circuit,” Science335, 38-b (2012).
  27. S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Response to Comment on “Nonreciprocal Light Propagation in a Silicon Photonic Circuit”,” Science335(6064), 38–c, author reply 38 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited