OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 245–255

Polarization-dependent properties of the cladding modes of a single mode fiber covered with gold nanoparticles

Wenjun Zhou, David J. Mandia, Matthew B.E. Griffiths, Aliaksandr Bialiayeu, Yang Zhang, Peter G. Gordon, Seán T. Barry, and Jacques Albert  »View Author Affiliations


Optics Express, Vol. 21, Issue 1, pp. 245-255 (2013)
http://dx.doi.org/10.1364/OE.21.000245


View Full Text Article

Enhanced HTML    Acrobat PDF (11798 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The properties of the high order cladding modes of standard optical fibers are measured in real-time during the deposition of gold nanoparticle layers by chemical vapor deposition (CVD). Using a tilted fiber Bragg grating (TFBG), the resonance wavelength and peak-to-peak amplitude of a radially polarized cladding mode resonance located 51 nm away from the core mode reflection resonance shift by 0.17 nm and 13.54 dB respectively during the formation of a ~200 nm thick layer. For the spectrally adjacent azimuthally polarized resonance, the corresponding shifts are 0.45 nm and 16.34 dB. In both cases, the amplitudes of the resonance go through a pronounced minimum of about 5 dB for thickness between 80 and 100 nm and at the same time the wavelengths shift discontinuously. These effects are discussed in terms of the evolving metallic boundary conditions perceived by the cladding modes as the nanoparticles grow. Scanning Electron Micrographs and observations of cladding mode light scattering by nanoparticle layers of various thicknesses reveal a strong correlation between the TFBG polarized transmission spectra, the grain size and fill factor of the nanoparticles, and the scattering efficiency. This allows the preparation of gold nanoparticle layers that strongly discriminate between radially and azimuthally polarized cladding mode evanescent fields, with important consequences in the plasmonic properties of these layers.

© 2013 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(240.0310) Optics at surfaces : Thin films
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(160.4236) Materials : Nanomaterials

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 15, 2012
Revised Manuscript: December 4, 2012
Manuscript Accepted: December 18, 2012
Published: January 3, 2013

Virtual Issues
European Conference on Optical Communication 2012 (2012) Optics Express

Citation
Wenjun Zhou, David J. Mandia, Matthew B.E. Griffiths, Aliaksandr Bialiayeu, Yang Zhang, Peter G. Gordon, Seán T. Barry, and Jacques Albert, "Polarization-dependent properties of the cladding modes of a single mode fiber covered with gold nanoparticles," Opt. Express 21, 245-255 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-1-245


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. J. Mock, R. T. Hill, Y.-J. Tsai, A. Chilkoti, and D. R. Smith, “Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation,” Nano Lett.12(4), 1757–1764 (2012). [CrossRef] [PubMed]
  2. L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett.10(1), 268–273 (2010). [CrossRef] [PubMed]
  3. Y.-C. Lu, R. Geng, C. Wang, F. Zhang, C. Liu, T. Ning, and S. Jian, “Polarization effects in tilted fiber Bragg grating refractometers,” J. Lightwave Technol.28(11), 1677–1684 (2010). [CrossRef]
  4. J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev. (early view), http://onlinelibrary.wiley.com/doi/10.1002/lpor.201100039/abstract .
  5. Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett.35(5), 637–639 (2010). [CrossRef] [PubMed]
  6. C. Caucheteur, Y. Shevchenko, L.-Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express19(2), 1656–1664 (2011). [CrossRef] [PubMed]
  7. J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron.25(4), 864–869 (2009). [CrossRef] [PubMed]
  8. T. Schuster, R. Herschel, N. Neumann, and C. G. Schaffer, “Miniaturized long-period fiber grating assisted surface plasmon resonance sensor,” J. Lightwave Technol.30(8), 1003–1008 (2012). [CrossRef]
  9. A. Bialiayeu, C. Caucheteur, N. Ahamad, A. Ianoul, and J. Albert, “Self-optimized metal coatings for fiber plasmonics by electroless deposition,” Opt. Express19(20), 18742–18753 (2011). [CrossRef] [PubMed]
  10. L.-Y. Shao, J. P. Coyle, S. T. Barry, and J. Albert, “Anomalous permittivity and plasmon resonances of copper nanoparticle conformal coating on optical fibres,” Opt. Mater. Express1(2), 128–137 (2011). [CrossRef]
  11. T. J. J. Whitehorne, J. P. Coyle, A. Mahmood, W. H. Monillas, G. P. A. Yap, and S. T. Barry, “Group 11 amidinates and guanidinates: potential precursors for vapour deposition,” Eur. J. Inorg. Chem.2011(21), 3240–3247 (2011). [CrossRef]
  12. C.-F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt.46(7), 1142–1149 (2007). [CrossRef] [PubMed]
  13. I. Del Villar, I. R. Matias, F. J. Arregui, and M. Achaerandio, “Nanodeposition of materials with complex refractive index in long-period fiber gratings,” J. Lightwave Technol.23(12), 4192–4199 (2005). [CrossRef]
  14. C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett.99(4), 041118 (2011). [CrossRef]
  15. The cylindrical Finite Difference Fiber Mode Solver included in FIMMWAVE by Photon Design, http://www.photond.com/products/fimmwave/fimmwave_features_25.htm
  16. I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: A software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum.78(1), 013705 (2007). [CrossRef] [PubMed]
  17. M. Chen and R. G. Horn, “Refractive index of sparse layers of adsorbed gold nanoparticles,” J. Colloid Interface Sci.315(2), 814–817 (2007). [CrossRef] [PubMed]
  18. W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys.103(7), 073713 (2008). [CrossRef]
  19. E. Castanié, V. Krachmalnicoff, A. Cazé, R. Pierrat, Y. De Wilde, and R. Carminati, “Distance dependence of the local density of states in the near field of a disordered plasmonic film,” Opt. Lett.37(14), 3006–3008 (2012). [CrossRef] [PubMed]
  20. S. H. Choi, B. Kwak, B. Han, and Y. L. Kim, “Competition between excitation and emission enhancement of quantum dots on disordered plasmonic nanostructures,” Opt. Express20(15), 16785–16793 (2012). [CrossRef]
  21. P. S. Westbrook, T. A. Strasser, and T. Erdogan, “In-line polarimeter using blazed fiber gratings,” Photonics Technol. Lett.12(10), 1352–1354 (2000). [CrossRef]
  22. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited