OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 314–321

Subwavelength polarization beam splitter with controllable splitting ratio based on surface plasmon polaritons

Yuanyuan Chen, Gang Song, Jinghua Xiao, Li Yu, and Jiasen Zhang  »View Author Affiliations


Optics Express, Vol. 21, Issue 1, pp. 314-321 (2013)
http://dx.doi.org/10.1364/OE.21.000314


View Full Text Article

Enhanced HTML    Acrobat PDF (3240 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel V-shaped Ag nanowire structure as a subwavelength polarization beam splitter. When an incident light is focused onto the junction of the two branches, two surface plasmon polaritons (SPPs) are launched and propagate along the two branches. The polarizations of the emission light from the two ends are always parallel to the directions of the branches and the splitting ratio can be adjusted by changing the polarization of the incident light. The polarization characteristic originates from the fact that only single plasmonic waveguide mode exists in the thin nanowire and high order modes are cutoff. The near-field coupling between the two branches dominates the SPPs launching and the splitting ratio, which are very different with the single nanowire case. The V-shaped nanowire structure will have many potential applications in the integration of plasmonic devices, such as plasmonic router or polarizer.

© 2013 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Integrated Optics

History
Original Manuscript: November 1, 2012
Revised Manuscript: December 12, 2012
Manuscript Accepted: December 14, 2012
Published: January 4, 2013

Citation
Yuanyuan Chen, Gang Song, Jinghua Xiao, Li Yu, and Jiasen Zhang, "Subwavelength polarization beam splitter with controllable splitting ratio based on surface plasmon polaritons," Opt. Express 21, 314-321 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-1-314


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Raether, Surface plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007). [CrossRef]
  3. E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  5. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63(12), 125417 (2001). [CrossRef]
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802–046805 (2005). [CrossRef] [PubMed]
  7. S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16(4), 2676–2684 (2008). [CrossRef] [PubMed]
  8. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969). [CrossRef]
  9. K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003). [CrossRef]
  10. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005). [CrossRef] [PubMed]
  11. A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006). [CrossRef] [PubMed]
  12. M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett. 7(8), 2346–2350 (2007). [CrossRef] [PubMed]
  13. Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. X. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9(5), 2049–2053 (2009). [CrossRef] [PubMed]
  14. H. S. Chu, W. B. Ewe, and E. P. Li, “Tunable propagation of light through a coupled-bent dielectric-loaded plasmonic waveguides,” J. Appl. Phys. 106(10), 106101 (2009). [CrossRef]
  15. G. Veronis and S. Fan, “Crosstalk between three-dimensional plasmonic slot waveguides,” Opt. Express 16(3), 2129–2140 (2008). [CrossRef] [PubMed]
  16. S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, “Novel efficient design of Y-splitter for surface plasmon polariton applications,” Opt. Express 16(19), 14369–14379 (2008). [CrossRef] [PubMed]
  17. Y. R. Fang, Z. P. Li, Y. Z. Huang, S. P. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010). [CrossRef] [PubMed]
  18. Z. P. Li, K. Bao, Y. R. Fang, Y. Z. Huang, P. Nordlander, and H. X. Xu, “Correlation between Incident and Emission Polarization in Nanowire Surface Plasmon Waveguides,” Nano Lett. 10(5), 1831–1835 (2010). [CrossRef] [PubMed]
  19. A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006). [CrossRef] [PubMed]
  20. Y. G. Sun, B. Mayers, T. Herricks, and Y. N. Xia, “Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process,” Nano Lett. 5, 675–679 (2003). [CrossRef]
  21. Y. T. Chen, T. R. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81(12), 125431 (2010). [CrossRef]
  22. FDTD solution is commercial software of the finite-difference time-domain method of Lumerical Solutions, Inc.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited