OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 322–328

Fabrication of antireflection subwavelength gratings at the tips of optical fibers using UV nanoimprint lithography

Yoshiaki Kanamori, Masaaki Okochi, and Kazuhiro Hane  »View Author Affiliations


Optics Express, Vol. 21, Issue 1, pp. 322-328 (2013)
http://dx.doi.org/10.1364/OE.21.000322


View Full Text Article

Enhanced HTML    Acrobat PDF (1289 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Antireflection (AR) layers at the tips of optical fibers are indispensable in high efficiency and low noise applications. We realized the AR structures with two-dimensional binary subwavelength gratings (SWGs) at the tips of optical fibers by using a dedicated UV nanoimprint machine. Using this technique, ideal AR structures with desired refractive indices can be realized at low cost in principle. The SWG with the period of 700 nm was fabricated at the tip of a single-mode optical fiber for optical communications system. The reflectance was decreased to less than 0.27% at measured wavelengths between 1460 nm and 1580 nm.

© 2013 OSA

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(310.1210) Thin films : Antireflection coatings
(220.4241) Optical design and fabrication : Nanostructure fabrication
(050.6624) Diffraction and gratings : Subwavelength structures
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 12, 2012
Revised Manuscript: December 20, 2012
Manuscript Accepted: December 20, 2012
Published: January 4, 2013

Virtual Issues
European Conference on Optical Communication 2012 (2012) Optics Express

Citation
Yoshiaki Kanamori, Masaaki Okochi, and Kazuhiro Hane, "Fabrication of antireflection subwavelength gratings at the tips of optical fibers using UV nanoimprint lithography," Opt. Express 21, 322-328 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-1-322


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24(20), 1422–1424 (1999). [CrossRef] [PubMed]
  2. Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm Period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78(2), 142–143 (2001). [CrossRef]
  3. H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40(Part 2, No. 7B), L747–L749 (2001). [CrossRef]
  4. Y. Kanamori, M. Ishimori, and K. Hane, “High efficient light-emitting diodes with antireflection subwavelength gratings,” IEEE Photon. Technol. Lett. 14(8), 1064–1066 (2002). [CrossRef]
  5. T. Yanagishita, K. Nishio, and H. Masuda, “Anti-reflection structures on lenses by nanoimprinting using ordered anodic porous alumina,” Appl. Phys. Express 2, 022001 (2009). [CrossRef]
  6. E. B. Grann, M. G. Varga, and D. A. Pommet, “Optimal design for antireflective tapered two-dimensional subwavelength grating structures,” J. Opt. Soc. Am. A 12(2), 333–339 (1995). [CrossRef]
  7. D. H. Raguin and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32(7), 1154–1167 (1993). [CrossRef] [PubMed]
  8. S. J. Wilson and M. C. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” Opt. Acta (Lond.) 29(7), 993–1009 (1982). [CrossRef]
  9. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasiomnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007). [CrossRef] [PubMed]
  10. T. Yanagishita, K. Nishio, and H. Masuda, “Antireflection polymer hole array structures by imprinting using metal molds from anodic porous alumina,” Appl. Phys. Express 1, 067004 (2008). [CrossRef]
  11. K. Yamada, M. Umetani, T. Tamura, Y. Tanaka, H. Kasa, and J. Nishii, “Antireflective structure imprinted on the surface of optical glass by SiC mold,” Appl. Surf. Sci. 255(7), 4267–4270 (2009). [CrossRef]
  12. C. David, P. Häberling, M. Schnieper, J. Söchtig, and C. Zschokke, “Nano-structured anti-reflective surfaces replicated by hot embossing,” Microelectron. Eng. 61–62, 435–440 (2002). [CrossRef]
  13. K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000). [CrossRef]
  14. M. E. Motamedi, W. H. Southwell, and W. J. Gunning, “Antireflection surfaces in silicon using binary optics technology,” Appl. Opt. 31(22), 4371–4376 (1992). [CrossRef] [PubMed]
  15. M. Karlsson and F. Nikolajeff, “Diamond micro-optics: microlenses and antireflection structured surfaces for the infrared spectral region,” Opt. Express 11(5), 502–507 (2003). [CrossRef] [PubMed]
  16. P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8(2), 53–56 (1997). [CrossRef]
  17. D. L. Brundrett, T. K. Gaylord, and E. N. Glytsis, “Polarizing mirror/absorber for visible wavelengths based on a silicon subwavelength grating: design and fabrication,” Appl. Opt. 37(13), 2534–2541 (1998). [CrossRef] [PubMed]
  18. T. K. Gaylord, W. E. Baird, and M. G. Moharam, “Zero-reflectivity high spatial-frequency rectangular-groove dielectric surface-relief gratings,” Appl. Opt. 25(24), 4562–4567 (1986). [CrossRef] [PubMed]
  19. S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897–2904 (1997). [CrossRef]
  20. W. Zhang and S. Y. Chou, “Fabrication of 60-nm transistors on 4-in. wafer using nanoimprint at all lithography levels,” Appl. Phys. Lett. 83(8), 1632–1634 (2003). [CrossRef]
  21. L.-R. Bao, X. Cheng, X. D. Huang, L. J. Guo, S. W. Pang, and A. F. Yee, “Nanoimprinting over topography and multilayer three-dimensional printing,” J. Vac. Sci. Technol. B 20(6), 2881–2886 (2002). [CrossRef]
  22. M. M. Alkaisi, W. Jayatissa, and M. Konijn, “Multilevel nanoimprint lithography,” Curr. Appl. Phys. 4(2-4), 111–114 (2004). [CrossRef]
  23. J. Haisma, M. Verheijen, K. V. D. Heuvel, and J. V. D. Berg, “Mold-assisted nanolithography: a process for reliable pattern replication,” J. Vac. Sci. Technol. B 14(6), 4124–4128 (1996). [CrossRef]
  24. K. Kobayashi, N. Sakai, S. Matsui, and M. Nakagawa, “Fluorescent UV-curable resists for UV-nanoimprint lithography,” Jpn. J. Appl. Phys. 49(6), 06GL07 (2010). [CrossRef]
  25. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited