OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 39–48

Optimizing bead size reduces errors in force measurements in optical traps

Rebecca K. Montange, Matthew S. Bull, Elisabeth R. Shanblatt, and Thomas T. Perkins  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 39-48 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1444 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical traps are used to measure force (F) over a wide range (0.01 to 1,000 pN). Variations in bead radius (r) hinder force precision since trap stiffness (ktrap) varies as r3 when r is small. Prior work has shown ktrap is maximized when r is approximately equal to the beam waist (w0), which on our instrument was ~400 nm when trapping with a 1064-nm laser. In this work, we show that by choosing rw0, we improved the force precision by 2.8-fold as compared to a smaller bead (250 nm). This improvement in force precision was verified by pulling on a canonical DNA hairpin. Thus, by using an optimum bead size, one can simultaneously maximize ktrap while minimizing errors in F.

© 2013 OSA

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: September 18, 2012
Revised Manuscript: December 12, 2012
Manuscript Accepted: December 13, 2012
Published: January 2, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Rebecca K. Montange, Matthew S. Bull, Elisabeth R. Shanblatt, and Thomas T. Perkins, "Optimizing bead size reduces errors in force measurements in optical traps," Opt. Express 21, 39-48 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. J. Greenleaf, M. T. Woodside, and S. M. Block, “High-resolution, single-molecule measurements of biomolecular motion,” Annu. Rev. Biophys. Biomol. Struct.36(1), 171–190 (2007). [CrossRef] [PubMed]
  2. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent Advances in Optical Tweezers,” Annu. Rev. Biochem.77(1), 205–228 (2008). [CrossRef] [PubMed]
  3. T. T. Perkins, “Optical traps for single molecule biophysics: a primer,” Laser Photon. Rev.3(1-2), 203–220 (2009). [CrossRef]
  4. D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003). [CrossRef] [PubMed]
  5. J. Liphardt, B. Onoa, S. B. Smith, I. J. Tinoco, and C. Bustamante, “Reversible unfolding of single RNA molecules by mechanical force,” Science292(5517), 733–737 (2001). [CrossRef] [PubMed]
  6. J. Liphardt, S. Dumont, S. B. Smith, I. Tinoco, and C. Bustamante, “Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality,” Science296(5574), 1832–1835 (2002). [CrossRef] [PubMed]
  7. C. Cecconi, E. A. Shank, C. Bustamante, and S. Marqusee, “Direct observation of the three-state folding of a single protein molecule,” Science309(5743), 2057–2060 (2005). [CrossRef] [PubMed]
  8. M. T. Woodside, P. C. Anthony, W. M. Behnke-Parks, K. Larizadeh, D. Herschlag, and S. M. Block, “Direct measurement of the full, sequence-dependent folding landscape of a nucleic acid,” Science314(5801), 1001–1004 (2006). [CrossRef] [PubMed]
  9. M. T. Woodside, W. M. Behnke-Parks, K. Larizadeh, K. Travers, D. Herschlag, and S. M. Block, “Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6190–6195 (2006). [CrossRef] [PubMed]
  10. J. Stigler, F. Ziegler, A. Gieseke, J. C. Gebhardt, and M. Rief, “The complex folding network of single calmodulin molecules,” Science334(6055), 512–516 (2011). [CrossRef] [PubMed]
  11. H. Yu, X. Liu, K. Neupane, A. N. Gupta, A. M. Brigley, A. Solanki, I. Sosova, and M. T. Woodside, “Direct observation of multiple misfolding pathways in a single prion protein molecule,” Proc. Natl. Acad. Sci. U.S.A.109(14), 5283–5288 (2012). [CrossRef] [PubMed]
  12. G. I. Bell, “Models for the Specific Adhesion of Cells to Cells,” Science200(4342), 618–627 (1978). [CrossRef] [PubMed]
  13. M. T. Woodside and M. T. Valentine, “Single Molecule Manipulation Using Optical Traps,” in Handbook of Single Molecule Biophysics, P. Hinterdorfer, and A. Van Oijen, eds. (Springer, 2009), pp. 341–367.
  14. S. F. Tolić-No̸rrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum.77(10), 103101 (2006). [CrossRef]
  15. K. Svoboda and S. M. Block, “Biological Applications of Optical Forces,” Annu. Rev. Biophys. Biomol. Struct.23(1), 247–285 (1994). [CrossRef] [PubMed]
  16. K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature365(6448), 721–727 (1993). [CrossRef] [PubMed]
  17. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–2809 (2004). [CrossRef] [PubMed]
  18. A. Pralle, M. Prummer, E.-L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech.44(5), 378–386 (1999). [CrossRef] [PubMed]
  19. L. Nugent-Glandorf and T. T. Perkins, “Measuring 0.1-nm motion in 1 ms in an optical microscope with differential back-focal-plane detection,” Opt. Lett.29(22), 2611–2613 (2004). [CrossRef] [PubMed]
  20. K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron.2(4), 1066–1076 (1996). [CrossRef]
  21. K. C. Vermeulen, J. van Mameren, G. J. M. Stienen, E. J. G. Peterman, G. J. L. Wuite, and C. F. Schmidt, “Calibrating bead displacements in optical tweezers using acousto-optic deflectors,” Rev. Sci. Instrum.77(1), 013704 (2006). [CrossRef]
  22. L. P. Ghislain, N. A. Switz, and W. W. Webb, “Measurement of Small Forces Using an Optical Trap,” Rev. Sci. Instrum.65(9), 2762–2768 (1994). [CrossRef]
  23. S. B. Smith, Y. Cui, and C. Bustamante, “Optical-trap force transducer that operates by direct measurement of light momentum,” Methods Enzymol.361, 134–162 (2003). [CrossRef] [PubMed]
  24. A. Farré, F. Marsà, and M. Montes-Usategui, “Optimized back-focal-plane interferometry directly measures forces of optically trapped particles,” Opt. Express20(11), 12270–12291 (2012). [CrossRef] [PubMed]
  25. R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative Measurements of Force and Displacement Using an Optical Trap,” Biophys. J.70(4), 1813–1822 (1996). [CrossRef] [PubMed]
  26. A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett.95(16), 168102 (2005). [CrossRef] [PubMed]
  27. V. Bormuth, A. Jannasch, M. Ander, C. M. van Kats, A. van Blaaderen, J. Howard, and E. Schäffer, “Optical trapping of coated microspheres,” Opt. Express16(18), 13831–13844 (2008). [CrossRef] [PubMed]
  28. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J.72(3), 1335–1346 (1997). [CrossRef] [PubMed]
  29. D. H. Paik and T. T. Perkins, “Overstretching DNA at 65 pN Does Not Require Peeling from Free Ends or Nicks,” J. Am. Chem. Soc.133(10), 3219–3221 (2011). [CrossRef] [PubMed]
  30. A. R. Carter, Y. Seol, and T. T. Perkins, “Precision Surface-Coupled Optical-Trapping Assay with One-Basepair Resolution,” Biophys. J.96(7), 2926–2934 (2009). [CrossRef] [PubMed]
  31. A. R. Carter, G. M. King, T. A. Ulrich, W. Halsey, D. Alchenberger, and T. T. Perkins, “Stabilization of an optical microscope to 0.1 nm in three dimensions,” Appl. Opt.46(3), 421–427 (2007). [CrossRef] [PubMed]
  32. F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Opt. Lett.23(1), 7–9 (1998). [CrossRef] [PubMed]
  33. C. E. Aitken, R. A. Marshall, and J. D. Puglisi, “An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments,” Biophys. J.94(5), 1826–1835 (2008). [CrossRef] [PubMed]
  34. M. P. Landry, P. M. McCall, Z. Qi, and Y. R. Chemla, “Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments,” Biophys. J.97(8), 2128–2136 (2009). [CrossRef] [PubMed]
  35. M. J. Schnitzer, K. Visscher, and S. M. Block, “Single kinesin molecules studied with a molecular force clamp,” Nature400(6740), 184–189 (1999). [CrossRef] [PubMed]
  36. T. T. Perkins, R. V. Dalal, P. G. Mitsis, and S. M. Block, “Sequence-dependent pausing of single lambda exonuclease molecules,” Science301(5641), 1914–1918 (2003). [CrossRef] [PubMed]
  37. Y. Seol, J. Li, P. C. Nelson, T. T. Perkins, and M. D. Betterton, “Elasticity of Short DNA Molecules: Theory and Experiment for Contour Lengths of 0.6-7 microm,” Biophys. J.93(12), 4360–4373 (2007). [CrossRef] [PubMed]
  38. A. Buosciolo, G. Pesce, and A. Sasso, “New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers,” Opt. Commun.230(4-6), 357–368 (2004). [CrossRef]
  39. A. Le Gall, K. Perronet, D. Dulin, A. Villing, P. Bouyer, K. Visscher, and N. Westbrook, “Simultaneous calibration of optical tweezers spring constant and position detector response,” Opt. Express18(25), 26469–26474 (2010). [CrossRef] [PubMed]
  40. A. Farré and M. Montes-Usategui, “A force detection technique for single-beam optical traps based on direct measurement of light momentum changes,” Opt. Express18(11), 11955–11968 (2010). [CrossRef] [PubMed]
  41. J. P. Rickgauer, D. N. Fuller, and D. E. Smith, “DNA as a metrology standard for length and force measurements with optical tweezers,” Biophys. J.91(11), 4253–4257 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited