OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 404–420

Multi-twist retarders: broadband retardation control using self-aligning reactive liquid crystal layers

Ravi K. Komanduri, Kristopher F. Lawler, and Michael J. Escuti  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 404-420 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2446 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a family of complex birefringent elements, called Multi-Twist Retarders (MTRs), which offer remarkably effective control of broadband polarization transformation. MTRs consist of two or more twisted liquid crystal (LC) layers on a single substrate and with a single alignment layer. Importantly, subsequent LC layers are aligned directly by prior layers, allowing simple fabrication, achieving automatic layer registration, and resulting in a monolithic film with a continuously varying optic axis. In this work, we employ a numerical design method and focus on achromatic quarter- and half-wave MTRs. In just two or three layers, these have bandwidths and general behavior that matches or exceeds all traditional approaches using multiple homogenous retarders. We validate the concept by fabricating several quarter-wave retarders using a commercial polymerizeable LC, and show excellent achromaticity across bandwidths of 450–650 nm and 400–800 nm. Due to their simple fabrication and many degrees of freedom, MTRs are especially well suited for patterned achromatic retarders, and can easily achieve large bandwidth and/or low-variation of retardation within visible through infrared wavelengths.

© 2013 OSA

OCIS Codes
(160.3710) Materials : Liquid crystals
(260.5430) Physical optics : Polarization
(310.0310) Thin films : Thin films
(310.4165) Thin films : Multilayer design
(310.6805) Thin films : Theory and design

ToC Category:
Thin Films

Original Manuscript: September 17, 2012
Revised Manuscript: November 30, 2012
Manuscript Accepted: December 3, 2012
Published: January 4, 2013

Ravi K. Komanduri, Kristopher F. Lawler, and Michael J. Escuti, "Multi-twist retarders: broadband retardation control using self-aligning reactive liquid crystal layers," Opt. Express 21, 404-420 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. H. Goldstein, Polarized Light (CRC Press, 2011), 3rd ed.
  2. H. Mattoussi, M. Srinviasarao, P. Kaatz, and G. C. Berry, “Birefringence and dispersion of uniaxial media,” Mol. Cryst. and Liq. Cryst.223, 69–84 (1992). [CrossRef]
  3. O. Parri, G. Smith, R. Harding, H. Yoon, I. Gardiner, J. Sargent, and K. Skjonnemand, “Patterned retarder films using reactive mesogen technology,” Proc. SPIE7956, 1–11 (2011).
  4. D. Clarke, “Achromatic halfwave plates and linear polarization rotators,” Opt. Acta14, 343–350 (1967). [CrossRef]
  5. P. Hariharan, “Achromatic and apochromatic halfwave and quarterwave retarders,” Opt. Eng.35, 3335–3337 (1996). [CrossRef]
  6. J. Schirmer and T. Schmidt-Kaler, “Liquid crystal phase retarder with broad spectral range,” Opt. Commun.176, 313–317 (2000). [CrossRef]
  7. B. Boulbry, B. Bousquet, B. Le Jeune, Y. Guern, and J. Lotrian, “Polarization errors associated with zero-order achromatic quarter-wave plates in the whole visible spectral range,” Opt. Express9, 225–235 (2001). [CrossRef]
  8. M. G. Destriau and J. Prouteau, “Realisation dun quart donde quasi achromatique par juxtaposition de 2 lames cristallines de meme nature,” J. Phys. Radium10, 53–55 (1949). [CrossRef]
  9. S. Pancharatnam, “Achromatic combinations of birefringent plates. Part I. An achromatic circular polarizer,” Proc. Ind. Acad. Sci. A41, 130–136 (1955).
  10. S. Pancharatnam, “Achromatic combinations of birefringent plates. Part II. An achromatic quarter-wave plate,” Proc. Ind. Acad. Sci. A41, 137–144 (1955).
  11. A. Samoylov, V. Samoylov, A. Vidmachenko, and A. Perekhod, “Achromatic and super-achromatic zero-order waveplates,” J. Quant. Spectrosc. Radiat. Transfer88, 319–325 (2004). [CrossRef]
  12. C. M. McIntyre and S. E. Harris, “Achromatic wave plates for visible spectrum,” J. Opt. Soc. Am.58, 1575–1580 (1968). [CrossRef]
  13. S. Tang and H. Kwok, “Mueller calculus and perfect polarization conversion modes in liquid crystal displays,” J. Appl. Phys.89, 5288–5294 (2001). [CrossRef]
  14. K. Yoon, H. Yoon, K. Kim, H. Cui, J. Park, W. Jang, and O. Park, “Application of twisted retarders to a cholesteric liquid crystal polarizer for the control of output polarization states,” Jap. J. Appl. Phys.48, 1–6 (2009). [CrossRef]
  15. O. Parri, K. Skjonnemand, K. Slaney, and M. Verrall, “Combination of optical films comprising a twisted a-plate and a polarizer,” US Patent7,187424 (2007).
  16. M. Lavrentovich, T. Sergan, and J. Kelly, “Switchable broadband achromatic half-wave plate with nematic liquid crystals,” Opt. Lett.29, 1411–1413 (2004). [CrossRef] [PubMed]
  17. Z. Zhuang, Y. Kim, and J. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett.76, 3995–3997 (2000). [CrossRef]
  18. T. X. Wu, Y. Huang, and S.-T. Wu, “Design optimization of broadband linear polarization converter using twisted nematic liquid crystal,” Jap. J. Appl. Phys.42, L39–L41 (2003). [CrossRef]
  19. S. Shen, J. She, and T. Tao, “Optimal design of achromatic true zero-order waveplates using twisted nematic liquid crystal,” J. Opt. Soc. Am. A22, 961–965 (2005). [CrossRef]
  20. D. Clarke, “Interference effects in Pancharatnam wave plates,” J. Opt. A - Pure Appl. Opt.6, 1047–1051 (2004). [CrossRef]
  21. R. Komanduri, J. Kim, K. Lawler, and M. Escuti, “Multi-twist retarders for broadband polarization transformation,” Proc. SPIE8279, 1–10 (2012).
  22. J. Kim, R. Komanduri, K. Lawler, D. Kekas, and M. Escuti, “Efficient and monolithic polarization conversion system based on a polarization grating,” Appl. Opt.51, 4852–4857 (2012). [CrossRef] [PubMed]
  23. Y. Li, J. Kim, and M. Escuti, “Broadband orbital angular momentum manipulation using liquid crystal thin films,” Proc. SPIE8274, 1–8 (2012).
  24. D. Mawet, “Taking the vector vortex coronagraph to the next level for ground- and space-based exoplanet imaging instruments: review of technology developments in the usa, japan, and europe,” Proc. SPIE8151, 1–14 (2011).
  25. C. Oh and M. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett.33, 2287–2289 (2008). [CrossRef] [PubMed]
  26. D. Broer and I. Heynderickx, “3 dimensionally ordered polymer networks with a helicoidal structure,” Macromolecules23, 2474–2477 (1990). [CrossRef]
  27. S. Kelly, “Anisotropic networks,” J. Mater. Chem.5, 2047–2061 (1995). [CrossRef]
  28. M. Schadt, H. Seiberle, A. Schuster, and S. M. Kelly, “Photo-induced alignment and patterning of hybrid liquid-crystalline polymer films on single substrates,” Jap. J. Appl. Phys.34, L764–L767 (1995). [CrossRef]
  29. D. Broer, J. Lub, and G. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature378, 467–469 (1995). [CrossRef]
  30. C. J. Koester, “Achromatic combinations of half-wave plates,” J. Opt. Soc. Am.49, 405–409 (1959). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited