OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 581–593

Optical forces through guided light deflections

Darwin Palima, Andrew Rafael Bañas, Gaszton Vizsnyiczai, Lóránd Kelemen, Thomas Aabo, Pál Ormos, and Jesper Glückstad  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 581-593 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1636 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical trapping and manipulation typically relies on shaping focused light to control the optical force, usually on spherical objects. However, one can also shape the object to control the light deflection arising from the light-matter interaction and, hence, achieve desired optomechanical effects. In this work we look into the object shaping aspect and its potential for controlled optical manipulation. Using a simple bent waveguide as example, our numerical simulations show that the guided deflection of light efficiently converts incident light momentum into optical force with one order-of-magnitude improvement in the efficiency factor relative to a microbead, which is comparable to the improvement expected from orthogonal deflection with a perfect mirror. This improvement is illustrated in proof-of-principle experiments demonstrating the optical manipulation of two-photon polymerized waveguides. Results show that the force on the waveguide exceeds the combined forces on spherical trapping handles. Furthermore, it shows that static illumination can exert a constant force on a moving structure, unlike the position-dependent forces from harmonic potentials in conventional trapping.

© 2013 OSA

OCIS Codes
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.7370) Optical devices : Waveguides

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: September 21, 2012
Revised Manuscript: November 22, 2012
Manuscript Accepted: November 23, 2012
Published: January 7, 2013

Darwin Palima, Andrew Rafael Bañas, Gaszton Vizsnyiczai, Lóránd Kelemen, Thomas Aabo, Pál Ormos, and Jesper Glückstad, "Optical forces through guided light deflections," Opt. Express 21, 581-593 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics5(6), 335–342 (2011). [CrossRef]
  2. J. Glückstad, “Optical manipulation: Sculpting the object,” Nat. Photonics5(1), 7–8 (2011). [CrossRef]
  3. S. Sukhov and A. Dogariu, “Negative Nonconservative Forces: Optical “Tractor Beams” for Arbitrary Objects,” Phys. Rev. Lett.107(20), 203602 (2011). [CrossRef] [PubMed]
  4. J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics5(9), 531–534 (2011). [CrossRef]
  5. G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photonics5(1), 48–51 (2011). [CrossRef]
  6. N. K. Metzger, M. Mazilu, L. Kelemen, P. Ormos, and K. Dholakia, “Observation and simulation of an optically driven micromotor,” J. Opt.13(4), 044018 (2011). [CrossRef]
  7. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics5(6), 343–348 (2011). [CrossRef]
  8. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970). [CrossRef]
  9. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.22(2), 132–134 (1997). [CrossRef] [PubMed]
  10. B. Koss, S. Chowdhury, T. Aabo, S. K. Gupta, and W. Losert, “Indirect optical gripping with triplet traps,” J. Opt. Soc. Am. B28(5), 982–985 (2011). [CrossRef]
  11. D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology22(28), 285503 (2011). [CrossRef] [PubMed]
  12. D. Palima, A. R. Bañas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Glückstad, “Wave-guided optical waveguides,” Opt. Express20(3), 2004–2014 (2012). [CrossRef] [PubMed]
  13. P. J. Rodrigo, L. Kelemen, D. Palima, C. A. Alonzo, P. Ormos, and J. Glückstad, “Optical microassembly platform for constructing reconfigurable microenvironments for biomedical studies,” Opt. Express17(8), 6578–6583 (2009). [CrossRef] [PubMed]
  14. Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett.100(1), 013602 (2008). [CrossRef] [PubMed]
  15. M. Mahamdeh, C. P. Campos, and E. Schäffer, “Under-filling trapping objectives optimizes the use of the available laser power in optical tweezers,” Opt. Express19(12), 11759–11768 (2011). [CrossRef] [PubMed]
  16. S. N. S. Reihani and L. B. Oddershede, “Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations,” Opt. Lett.32(14), 1998–2000 (2007). [CrossRef] [PubMed]
  17. N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt.45(9), 1943–1949 (1998). [CrossRef]
  18. V. Bormuth, A. Jannasch, M. Ander, C. M. van Kats, A. van Blaaderen, J. Howard, and E. Schäffer, “Optical trapping of coated microspheres,” Opt. Express16(18), 13831–13844 (2008). [CrossRef] [PubMed]
  19. A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics6(7), 469–473 (2012). [CrossRef]
  20. S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express17(24), 21944–21955 (2009). [CrossRef] [PubMed]
  21. S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater.4(7), 530–533 (2005). [CrossRef] [PubMed]
  22. T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys.11(9), 093021 (2009). [CrossRef]
  23. S. Maruo, A. Takaura, and Y. Saito, “Optically driven micropump with a twin spiral microrotor,” Opt. Express17(21), 18525–18532 (2009). [CrossRef] [PubMed]
  24. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992). [CrossRef] [PubMed]
  25. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4(6), 388–394 (2010). [CrossRef]
  26. P. C. Ke and M. Gu, “Characterization of Trapping Force on Metallic Mie Particles,” Appl. Opt.38(1), 160–167 (1999). [CrossRef] [PubMed]
  27. L. A. Ambrosio and H. E. Hernández-Figueroa, “Inversion of gradient forces for high refractive index particles in optical trapping,” Opt. Express18(6), 5802–5808 (2010). [CrossRef] [PubMed]
  28. D. C. Benito, S. H. Simpson, and S. Hanna, “FDTD simulations of forces on particles during holographic assembly,” Opt. Express16(5), 2942–2957 (2008). [CrossRef] [PubMed]
  29. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag.14(3), 302–307 (1966). [CrossRef]
  30. A. Buzas, L. Kelemen, A. Mathesz, L. Oroszi, G. Vizsnyiczai, T. Vicsek, and P. Ormos, “Light sailboats: Laser driven autonomous microrobots,” Appl. Phys. Lett.101(4), 041111 (2012). [CrossRef]
  31. L. Kelemen, S. Valkai, and P. Ormos, “Integrated optical motor,” Appl. Opt.45(12), 2777–2780 (2006). [CrossRef] [PubMed]
  32. H. U. Ulriksen, J. Thøgersen, S. Keiding, I. Perch-Nielsen, J. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rap. Pub.3, 080341–080345 (2008).
  33. A. La Porta and M. D. Wang, “Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett.92(19), 190801 (2004). [CrossRef] [PubMed]
  34. S.H. Simpson, D.B. Phillips, D.M. Carberry, and S. Hanna, “Bespoke optical springs and passive force clamps from shaped dielectric particles,” J. Quant. Spectrosc. Radiat. Transf. (advanced online publication 29 October 2012) http://dx.doi.org/ [CrossRef]
  35. S. H. Simpson and S. Hanna, “Thermal motion of a holographically trapped SPM-like probe,” Nanotechnology20(39), 395710 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (253 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited