OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 605–617

Inter-comparison of hemispherical conical reflectance factors (HCRF) measured with four fibre-based spectrometers

K. Anderson, M. Rossini, J. Pacheco-Labrador, M. Balzarolo, A. Mac Arthur, F. Fava, T. Julitta, and L. Vescovo  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 605-617 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1554 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe the results of an experiment designed to compare the radiometric performance of four different spectroradiometers in ideal field conditions. A carefully designed experiment where instruments were simultaneously triggered was used to measure the Hemispherical Conical Reflectance Factors (HCRF) of four targets of varying reflectance. The experiment was in two parts. Stage 1 covered a 2 hour period finishing at solar noon, where 50 measurements of the targets were collected in sequence. Stage 2 comprised 10 rapid sequential measurements over each target. We applied a method for normalising full width half maximum (FWHM) differences between the instruments, which was a source of variability in the raw data. The work allowed us to determine data reproducibility, and we found that lower-cost instruments (Ocean Optics and PP Systems) produced data of similar radiometric quality to those manufactured by Analytical Spectral Devices (ASD –here we used the ASD FieldSpec Pro) in the spectral range 400-850 nm, which is the most significant region for research communities interested in measuring vegetation dynamics. Over the longer time-series there were changes in HCRF caused by the structural and spectral characteristics of some targets.

© 2013 OSA

OCIS Codes
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Remote Sensing

Original Manuscript: August 22, 2012
Revised Manuscript: November 2, 2012
Manuscript Accepted: November 4, 2012
Published: January 7, 2013

K. Anderson, M. Rossini, J. Pacheco-Labrador, M. Balzarolo, A. Mac Arthur, F. Fava, T. Julitta, and L. Vescovo, "Inter-comparison of hemispherical conical reflectance factors (HCRF) measured with four fibre-based spectrometers," Opt. Express 21, 605-617 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Hilker, N. C. Coops, S. B. Coggins, M. A. Wulder, M. Brown, T. A. Black, Z. Nesic, and D. Lessard, “Detection of foliage conditions and disturbance from multi-angular high spectral resolution remote sensing,” Remote Sens. Environ.113(2), 421–434 (2009). [CrossRef]
  2. T. Hilker, N. C. Coops, Z. Nesic, M. A. Wulder, and A. T. Black, “Instrumentation and approach for unattended year round tower based measurements of spectral reflectance,” Comput. Electron. Agric.56(1), 72–84 (2007). [CrossRef]
  3. J. A. Gamon, Y. Cheng, H. Claudio, L. MacKinney, and D. A. Sims, “A mobile tram system for systematic sampling ecosystem optical properties,” Remote Sens. Environ.103(3), 246–254 (2006). [CrossRef]
  4. M. Meroni, A. Barducci, S. Cogliati, F. Castagnoli, M. Rossini, L. Busetto, M. Migliavacca, E. Cremonese, M. Galvagno, R. Colombo, and U. M. di Cella, “The hyperspectral irradiometer, a new instrument for long-term and unattended field spectroscopy measurements,” Rev. Sci. Instrum.82(4), 043106 (2011). [CrossRef] [PubMed]
  5. M. Rossini, S. Cogliati, M. Meroni, M. Migliavacca, M. Galvagno, L. Busetto, E. Cremonese, T. Julitta, C. Siniscalco, U. Morra di Cella, and R. Colombo, “Remote sensing-based estimation of gross primary production in a subalpine grassland,” Biogeosci.9(7), 2565–2584 (2012). [CrossRef]
  6. J. A. Gamon, L. Serrano, and J. S. Surfus, “The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels,” Oecologia112(4), 492–501 (1997). [CrossRef]
  7. P. J. Zarco-Tejada, V. Gonzalez-Dugo, and J. A. J. Berni, “Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera,” Remote Sens. Environ.117, 322–337 (2012). [CrossRef]
  8. M. Meroni, M. Rossini, L. Guanter, L. Alonso, U. Rascher, R. Colombo, and J. Moreno, “Remote sensing of solar induced chlorophyll fluorescence: review of methods and applications,” Remote Sens. Environ.113(10), 2037–2051 (2009). [CrossRef]
  9. M. Rossini, M. Meroni, M. Migliavacca, G. Manca, S. Cogliati, L. Busetto, V. Picchi, A. Cescatti, G. Seufert, and R. Colombo, “High resolution field spectroscopy measurements for estimating gross ecosystem production in a rice field,” Agric. For. Meteorol.150(9), 1283–1296 (2010). [CrossRef]
  10. M. Balzarolo, K. Anderson, C. Nichol, M. Rossini, L. Vescovo, N. Arriga, G. Wohlfahrt, J.-C. Calvet, A. Carrara, S. Cerasoli, S. Cogliati, F. Daumard, L. Eklundh, J. A. Elbers, F. Evrendilek, R. N. Handcock, J. Kaduk, K. Klumpp, B. Longdoz, G. Matteucci, M. Meroni, L. Montagnani, J.-M. Ourcival, E. P. Sánchez-Cañete, J.-Y. Pontailler, R. Juszczak, B. Scholes, and M. P. Martín, “Ground-Based Optical Measurements at European Flux Sites: A Review of Methods, Instruments and Current Controversies,” Sensors (Basel)11(8), 7954–7981 (2011). [CrossRef] [PubMed]
  11. G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing–definitions and case studies,” Remote Sens. Environ.103(1), 27–42 (2006). [CrossRef]
  12. K. Anderson, J. L. Dungan, and A. MacArthur, “On the reproducibility of field measured reflectance factors in the context of vegetation studies,” Remote Sens. Environ.115(8), 1893–1905 (2011). [CrossRef]
  13. K. L. Castro-Esau, G. A. Sanchez-Azofeifa, and B. Rivard, “Comparison of spectral indices obtained using multiple spectroradiometers,” Remote Sens. Environ.103(3), 276–288 (2006). [CrossRef]
  14. M. Morys, F. M. Mims, S. Hagerup, S. E. Anderson, A. Baker, J. Kia, and T. Walkup, “Design, calibration, and performance of MICROTOPS II handheld ozone monitor and Sun photometer,” J. Geophys. Res.106(D13), 14573–14582 (2001). [CrossRef]
  15. A. Damm, A. Erler, W. Hillen, M. Meroni, M. E. Schaepman, W. Verhoef, and U. Rascher, “Modeling the impact of spectral sensor configurations on the FLD retrieval accuracy of sun-induced chlorophyll fluorescence,” Remote Sens. Environ.115(8), 1882–1892 (2011). [CrossRef]
  16. M. Meroni, L. Busetto, L. Guanter, S. Cogliati, G. F. Crosta, M. Migliavacca, C. Panigada, M. Rossini, and R. Colombo, “Characterization of fine resolution field spectrometers using solar Fraunhofer lines and atmospheric absorption features,” Appl. Opt.49(15), 2858–2871 (2010). [CrossRef] [PubMed]
  17. E. M. Rollin, E. J. Milton, and D. R. Emery, “Reference panel anisotropy and diffuse radiation - some implications for field spectroscopy,” Int. J. Remote Sens.21(15), 2799–2810 (2000). [CrossRef]
  18. M. Wettle, V. E. Brando, and A. G. Dekker, “A methodology for retrieval of environmental noise equivalent spectra applied to four Hyperion scenes of the same tropical coral reef,” Remote Sens. Environ.93(1-2), 188–197 (2004). [CrossRef]
  19. J. A. Gamon, J. Peñuelas, and C. B. Field, “A narrow waveband spectral index that tracks diurnal changes in photosynthetic efficiency,” Remote Sens. Environ.41(1), 35–44 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited