OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 647–661

A quantitative, non-interferometric X-ray phase contrast imaging technique

Peter R.T. Munro, Luigi Rigon, Konstantin Ignatyev, Frances C.M. Lopez, Diego Dreossi, Robert D. Speller, and Alessandro Olivo  »View Author Affiliations


Optics Express, Vol. 21, Issue 1, pp. 647-661 (2013)
http://dx.doi.org/10.1364/OE.21.000647


View Full Text Article

Enhanced HTML    Acrobat PDF (1185 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a quantitative, non-interferometric, X-ray differential phase contrast imaging technique based on the edge illumination principle. We derive a novel phase retrieval algorithm which requires only two images to be acquired and verify the technique experimentally using synchrotron radiation. The technique is useful for planar imaging but is expected to be important for quantitative phase tomography also. The properties and limitations of the technique are studied in detail.

© 2012 OSA

OCIS Codes
(110.7440) Imaging systems : X-ray imaging
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(340.6720) X-ray optics : Synchrotron radiation

ToC Category:
X-ray Optics

History
Original Manuscript: August 30, 2012
Revised Manuscript: October 8, 2012
Manuscript Accepted: October 9, 2012
Published: January 7, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Peter R.T. Munro, Luigi Rigon, Konstantin Ignatyev, Frances C.M. Lopez, Diego Dreossi, Robert D. Speller, and Alessandro Olivo, "A quantitative, non-interferometric X-ray phase contrast imaging technique," Opt. Express 21, 647-661 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-1-647


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Bonse and M. Hart, “An X-ray interferometer,” Appl. Phys. Lett.6(8), 155–156 (1965). [CrossRef]
  2. T. Davis, D. Gao, T. Gureyev, A. Stevenson, and S. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard X-rays,” Nature373(6515), 595–598 (1995). [CrossRef]
  3. A. Momose, “Demonstration of phase-contrast X-ray computed tomography using an X-ray interferometer,” Nucl. Instrum. Meth. A352(3), 622 – 628 (1995). [CrossRef]
  4. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum.66(12), 5486–5492 (1995). [CrossRef]
  5. D. Chapman, W. Thomlinson, F. Arfelli, N. Gmür, Z. Zhong, R. Menk, R. E. Johnson, D. Washburn, E. Pisano, and D. Sayers, “Mammography imaging studies using a Laue crystal analyzer,” The 9th National Conference on Synchrotron Radiation Instrumentation67(9), 3360–3360 (1996).
  6. P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard X-ray imaging,” J. Phys. D Appl. Phys.29, 133–146 (1996). [CrossRef]
  7. D. Chapman, W. Thomlinson, R. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced X-ray imaging,” Phys. Med. Biol.42(11), 2015–2025 (1997). [CrossRef] [PubMed]
  8. D. Paganin, T. E. Gureyev, K. M. Pavlov, R. A. Lewis, and M. Kitchen, “Phase retrieval using coherent imaging systems with linear transfer functions,” Opt. Commun.234, 87 – 105 (2004). [CrossRef]
  9. Y. I. Nesterets, T. Gureyev, D. Paganin, K. Pavlov, and S. W. Wilkins, “Quantitative diffraction-enhanced X-ray imaging of weak objects,” J. Phys. D Appl. Phys.37(8), 1262–1274 (2004). [CrossRef]
  10. M. J. Kitchen, D. M. Paganin, K. Uesugi, B. J. Allison, R. A. Lewis, S. B. Hooper, and K. M. Pavlov, “X-ray phase, absorption and scatter retrieval using two or more phase contrast images,” Opt. Express18(19), 19,994–20,012 (2010). [CrossRef]
  11. P. C. Diemoz, P. Coan, C. Glaser, and A. Bravin, “Absorption, refraction and scattering in analyzer-based imaging: comparison of different algorithms,” Opt. Express18, 3494–3509 (2010). [CrossRef] [PubMed]
  12. D. J. Vine, D. M. Paganin, K. M. Pavlov, J. Kraeusslich, O. Wehrhan, I. Uschmann, and E. Foerster, “Analyzer-based phase contrast imaging and phase retrieval using a rotating anode X-ray source,” Appl. Phys. Lett.91(25), 254110 (2007). [CrossRef]
  13. S. Wilkins, T. Gureyev, D. Gao, A. Pogany, and A. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384, 335–338 (1996). [CrossRef]
  14. K. Nugent, T. Gureyev, D. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard X-rays,” Phys. Rev. Lett.77, 2961–2964 (1996). [CrossRef] [PubMed]
  15. P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. Guigay, and M. Schlenker, “Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation X-rays,” Appl. Phys. Lett.75(19), 2912–2914 (1999). [CrossRef]
  16. T. Gureyev, C. Raven, A. Snigirev, I. Snigireva, and S. Wilkins, “Hard X-ray quantitative non-interferometric phase-contrast microscopy,” J. Phys. D Appl. Phys.32(5), 563–567 (1999). [CrossRef]
  17. D. Paganin, S. Mayo, T. Gureyev, P. Miller, and S. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc.-Oxford206, 33–40 (2002). [CrossRef]
  18. T. Gureyev, A. Pogany, D. Paganin, and S. Wilkins, “Linear algorithms for phase retrieval in the fresnel region,” Opt. Commun.231, 53–70 (2004). [CrossRef]
  19. T. Gureyev, Y. Ne, D. Paganin, A. Pogany, and S. Wilkins, “Linear algorithms for phase retrieval in the fresnel region. 2. partially coherent illumination,” Opt. Commun.259, 569–580 (2005). [CrossRef]
  20. K. Nugent, “The measurement of phase through the propagation of intensity: an introduction,” Contemp. Phys.52, 55–69 (2011). [CrossRef]
  21. K. Creath, “Phase-measurement interferometry techniques,” Prog. OpticsXXVI, 349–393 (1988). [CrossRef]
  22. A. Lohmann and D. Silva, “An interferometer based on the Talbot effect,” Opt. Commun.2(9), 413–415 (1971). [CrossRef]
  23. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express13(16), 6296–6304 (2005). [CrossRef] [PubMed]
  24. A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-ray Talbot interferometry,” Jpn. J. Appl. Phys.42(Part 2, No. 7B), L866–L868 (2003). [CrossRef]
  25. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys.2(4), 258–261 (2006). [CrossRef]
  26. P. Zhu, K. Zhang, Z. Wang, Y. Liu, X. Liu, Z. Wu, S. A. McDonald, F. Marone, and M. Stampanoni, “Low-dose, simple, and fast grating-based X-ray phase-contrast imaging,” Proc. Natl. Acad. Sci. U. S. A.107(31), 576–581 (2010). [CrossRef]
  27. T. Gureyev, S. Mayo, D. Myers, Y. Nesterets, D. Paganin, A. Pogany, A. Stevenson, and S. Wilkins, “Refracting Rontgen’s rays: propagation-based X-ray phase contrast for biomedical imaging,” J. Appl. Phys.105(10), 102005 (2009). [CrossRef]
  28. A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys.28(8), 1610–1619 (2001). [CrossRef] [PubMed]
  29. P. Munro, K. Ignatyev, R. Speller, and A. Olivo, “Source size and temporal coherence requirements of coded aperture type X-ray phase contrast imaging systems,” Opt. Express18(19), 19681–19692 (2010). [CrossRef]
  30. Z.-F. Huang, K.-J. Kang, L. Zhang, Z.-Q. Chen, F. Ding, Z.-T. Wang, and Q.-G. Fang, “Alternative method for differential phase-contrast imaging with weakly coherent hard X-rays,” Phys. Rev. A79(1), 013815 (2009). [CrossRef]
  31. A. Olivo and R. Speller, “A coded-aperture technique allowing X-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett.91(7), 074106 (2007). [CrossRef]
  32. A. Olivo and R. Speller, “Modelling of a novel X-ray phase contrast imaging technique based on coded apertures,” Phys. Med. Biol.52(22), 6555–6573 (2007). [CrossRef] [PubMed]
  33. P. Munro, K. Ignatyev, R. Speller, and A. Olivo, “Phase and absorption retrieval using incoherent X-ray sources,” Proc. Natl. Acad. Sci. U. S. A.109, 13,922–13,927 (2012). [CrossRef]
  34. A. Olivo and R. Speller, “Image formation principles in coded-aperture based X-ray phase contrast imaging,” Phys. Med. Biol.53(22), 6461–6474 (2008). [CrossRef] [PubMed]
  35. A. Olivo, S. E. Bohndiek, J. A. Griffiths, A. Konstantinidis, and R. D. Speller, “A non-free-space propagation X-ray phase contrast imaging method sensitive to phase effects in two directions simultaneously,” Appl. Phys. Lett.94(4), 044108 (2009). [CrossRef]
  36. P. Munro, K. Ignatyev, R. Speller, and A. Olivo, “Design of a novel phase contrast X-ray imaging system for mammography,” Phys. Med. Biol.55(14), 4169–4185 (2010). [CrossRef] [PubMed]
  37. G. James, Geometrical theory of diffraction for electromagnetic waves (Peter Peregrinus Ltd., 1976).
  38. P. Munro, K. Ignatyev, R. Speller, and A. Olivo, “The relationship between wave and geometrical optics models of coded aperture type X-ray phase contrast imaging systems,” Opt. Express18(5), 4103–4117 (2010). [CrossRef] [PubMed]
  39. F. Arfelli, A. Bravin, G. Barbiellini, G. Cantatore, E. Castelli, M. D. Michiel, P. Poropat, R. Rosei, M. Sessa, A. Vacchi, L. D. Palma, R. Longo, S. Bernstorff, A. Savoia, and G. Tromba, “Digital mammography with synchrotron radiation,” Rev. Sci. Instrum.66(2), 1325–1328 (1995). [CrossRef]
  40. A. Abrami, F. Arfelli, R. Barroso, A. Bergamaschi, F. Bille, P. Bregant, F. Brizzi, K. Casarin, E. Castelli, V. Chenda, L. Palma, D. Dreossi, A. Fava, R. Longo, L. Mancini, R. Menk, F. Montanari, A. Olivo, S. Pani, A. Pillon, E. Quai, S. Kaiser, L. Rigon, T. Rokvic, M. Tonutti, G. Tromba, A. Vaseotto, C. Venanzi, F. Zanconati, A. Zanetti, and F. Zanini, “Medical applications of synchrotron radiation at the SYRMEP beamline of Elettra,” Nucl. Instrum. Meth. A548, 221–227 (2005). [CrossRef]
  41. L. Rigon, F. Arfelli, A. Astolfo, A. Bergamaschi, D. Dreossi, R. Longo, R.-H. Menk, B. Schmitt, E. Vallazza, and E. Castelli, “A single-photon counting edge-on silicon detector for synchrotron radiation mammography,” Nucl. Instrum. Meth. A608(1, Supplement 1), S62 – S65 (2009). [CrossRef]
  42. L. Rigon, F. Arfelli, A. Bergamaschi, R. C. Chen, D. Dreossi, R. Longo, R. H. Menk, B. Schmitt, E. Vallazza, and E. Castelli, “Evaluation of charge -sharing effects on the spatial resolution of the PICASSO detector,” Nucl. Instrum. Meth. A617(1–3), 244–245 (2010). [CrossRef]
  43. F. C. Lopez, L. Rigon, R. Longo, F. Arfelli, A. Bergamaschi, R. C. Chen, D. Dreossi, B. Schmitt, E. Vallazza, and E. Castelli, “Development of a fast read-out system of a single photon counting detector for mammography with synchrotron radiation,” J. Instrum.6, C12031 (2011). [CrossRef]
  44. B. Henke, E. Gullikson, and J. Davis, “X-Ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” Atom. Data Nucl. Data54(2), 181 – 342 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited